
I
t

K
a

b

a

A
R
R
A
A

K
F
T
G
3
F

1

m
o
s
w
t
i
t
t
i
t
i
w
i
l
c
t
n
fi

m
r

0
d

Thermochimica Acta 494 (2009) 71–79

Contents lists available at ScienceDirect

Thermochimica Acta

journa l homepage: www.e lsev ier .com/ locate / tca

mprovement of the thermal diffusivity measurement of thin samples by
he flash method

uk-Hee Lim a, Seog-Kwang Kim b,∗, Myung-Kyoon Chung a

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 335, Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
Thermophysical Property Lab., Korea Advanced Institute of Science and Technology, 335, Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea

r t i c l e i n f o

rticle history:
eceived 2 February 2009
eceived in revised form 2 April 2009
ccepted 22 April 2009

a b s t r a c t

In the conventional thermal diffusivity measurement by the flash method, the effect of finite width of
the flash pulse and the effect of graphite layers on both front and rear surfaces are often neglected.
In the present study, the error of the half-time method caused by the graphite layers is theoretically
assessed and the minimum thickness ratio required for accurate measurement by the half-time method
vailable online 3 May 2009
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lash method
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raphite coating

is investigated. In order to minimize the error of the flash method in measuring the thermal diffusivity
of a thin sample coated by graphite, 3-layer model is proposed that includes corrections of the finite
pulse effect and the heat loss effect. The proposed model is applied to measure the thermal diffusivities
of copper, aluminum, iron and Inconel 600. It is found that the proposed 3-layer model reduces the
measurement error considerably.
-Layer model
lash pulse width

. Introduction

The flash method is one of several methods to measure ther-
al diffusivity of various solid materials [1]. Since the preparation

f the material specimen is simple, measurement time is relatively
hort, and measurement accuracy is in many cases good, it has been
idely used in industries and research institutions. The conven-

ional flash method is based on the fact that the thermal diffusivity
s a simple function of the sample thickness and the half-time
1/2 that is the time elapsed from the flash pulse heating to the
ime where the rear surface temperature reaches half of its max-
mum. Such relation is theoretically obtained under assumptions
hat there is no heat loss from the sample specimen to its surround-
ng, there are no coating layers of any type, and heating flash pulse is

idth-less and uniform. However, the assumed conditions are only
deal, and deviation of the real situation from these assumptions
eads to inaccuracy of the thermal diffusivity measurement. Errors
aused by these deviations have been theoretically and experimen-
ally studied worldwide such as: radiation heat loss effect [2–5],
on-uniform heating effect [6,7], graphite coating effect [8–13] and

nite pulse time effect [14–16], etc.

Finite pulse time effect caused by the actual pulse of finite width
ust be corrected if the response time of the transient temperature

ise curve is very short. For this study, an adequate time depen-
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E-mail address: skwang@kaist.ac.kr (S.-K. Kim).
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© 2009 Elsevier B.V. All rights reserved.

dent function must be employed to represent the variation of the
light intensity with time during the pulse heating. It is known that
the pulse shape of the laser or xenon flash is well described by an
exponential function [14]. Realistic pulse shape can be obtained by
controlling the number of the time constants in the exponential
function [16].

In the flash method, both front and rear surfaces are often coated
with a thin, opaque and black layer, usually a graphite layer to
increase the absorbance of flash energy at the front surface as well
as to increase the emissivity at the rear surface so that the surface
temperature may be easily detected by the IR-detector. Since the
graphite layer is usually very thin, its thermal resistance is negligi-
ble if the sample has an adequate thickness. In the cases when the
sample is relatively thin or the sample material is highly conduc-
tive, however, thermal resistance effect of the coating layer must be
considered to determine the thermal diffusivity accurately. Unfor-
tunately, however, since it is difficult to measure the thickness and
the thermo-physical properties of the graphite coating layer [8], it
is not easy to estimate the graphite coating effect quantitatively.
There appeared a few researches to evaluate the thermal resistance
of the graphite coating layer, but reliable data are not yet available.
Araki et al. [10] attempted theoretically to evaluate errors caused
by the graphite coating for a one-side coated sample using thermal

properties of the graphite coating which had been experimentally
determined by a 2-layer model.

Guo et al. [11] used the thermophysical properties of graphite
from TPRC data book [17] to evaluate the thermal diffusivity of a
thin diamond film by using a 3-layer model. In a 3-layer model

http://www.sciencedirect.com/science/journal/00406031
http://www.elsevier.com/locate/tca
mailto:skwang@kaist.ac.kr
dx.doi.org/10.1016/j.tca.2009.04.019
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f Cernuschi et al. [12], they estimated the thermal diffusivity of
raphite coating by using the Voigt–Reuss model with tabulated
nown values of thermophysical properties of graphite. The
oigt–Reuss model assumes that the graphite grains and voids are
tacked like a column. But the graphite grains are usually stacked
andomly, and the Voigt–Reuss model is therefore not correct.

On the other hand, in order to take the graphite coating effect
nto account, Kim and Kim [13] have developed a noble method
o determine the thermal diffusivity by introducing an apparent
hickness of the graphite coating layer. Scrutinizing a large number
f transient temperature rise curves at the rear surface of various
ample materials, they found an empirical correlation that relates
he apparent thickness of the graphite coating layer to the delayed
alf-time. They added the apparent thickness found in this way to
he sample thickness in the 1-layer model to determine the thermal
iffusivity. But, since the empirical correlation has been obtained

or a limited range of half-time, when the measured half-time is
ery short, their method often leads to erroneous evaluation of the
hermal diffusivity. Moreover, they did not consider the change of
he half-time caused by the finite pulse time effect and heat loss
ffect.

In the first part of the present work, apparent thermal diffu-
ivity is defined for the 1-layer model, and the relation between
he apparent thermal diffusivity and the thickness ratio L* = Ls/Lgr

sample thickness/graphite coating thickness) is investigated with
he specific thermal mass ratio (�C)* = (�C)s/(�C)gr as a parameter.
n this study, two cases are considered. One is that only the sample
hickness is used in the 1-layer model, and the other case is that the
hickness of the graphite layers is added to the sample thickness in
he evaluation of the thermal diffusivity. From this study, minimum
ample thickness required to secure accurate thermal diffusivity is
btained.

In the second part, in order to propose a 3-layer model that treats
he effect of the graphite coating layer explicitly, the thermophysi-
al properties of the graphite itself are measured. In the final part,
n order to assess the reliability of the proposed 3-layer model and
o investigate the finite pulse time effect, quantitatively, transient
emperature rise curves for a total of four typical metal samples are

easured and both 1-layer model and 3-layer model are applied
o evaluate the thermal diffusivity. In these test measurements,
he effect of the finite pulse time correction on the measurement
ccuracy will also be investigated.

. Apparent thermal diffusivity

The fundamental principle of the conventional flash method to
easure the thermal diffusivity of a 1-layer sample is that the ther-
al diffusivity is a function of the half-time t1/2, the time elapsed

rom the pulse heating to the time when the rear surface temper-
ture reaches half of its maximum temperature rise. The thermal
iffusivity by the half-time method [1] for a 1-layer sample is eval-
ated from the following equation:

= 0.1388L2

t1/2
(1)

ere L is the thickness of the sample. This equation is accurate only
hen the following conditions are satisfied [5]: (a) the light pulse
idth is negligibly short, (b) heating by the flash light is uniform

ver the front surface of the sample, (c) there is no heat loss during
easurement after pulse heating, (d) the sample material is uni-
orm and homogenous and (e) the sample is nontransparent to the
ight pulse.

When the flash method is applied to measure the thermal diffu-
ivity of a sample that is coated with graphite layers at both sides, if
he sample thickness is sufficiently thick, the thermal resistance of
Acta 494 (2009) 71–79

the graphite coating layers is usually neglected and the coated sam-
ple is assumed as a homogeneous material. If the graphite coating
layer is not negligible, the thermal resistance of the graphite coating
layers must be explicitly considered. For such a 3-layered structure,
the effective thermal diffusivity can be calculated by the following
equation:

˛e = (Ls + 2Lgr)2

(Ls/˛s(�C)s) + 2(Lgr/˛gr(�C)gr){(�C)sLs + 2(�C)grLgr}
(2)

Here (�C) is specific thermal mass, �: density, C: specific heat and
subscript s and gr indicate the sample and the graphite coating
layer, respectively. Even though the thermophysical properties of
the graphite coating are known a priori, since generally there is no
way to directly measure the effective thermal diffusivity, the ther-
mal diffusivity of the sample material cannot be obtained by Eq.
(2).

Since the matching condition of heat flux at each interface
between the adjacent layers must be satisfied, the temperature
rise at the rear surface for a multi-layered structure is quite dif-
ferent from that of a homogenous single layer. Consequently, if the
half-time t1/2 actually measured from the multi-layered material is
substituted into Eq. (1) for a 1-layer sample, the resulting thermal
diffusivity is neither the effective nor the true thermal diffusivity
of the sample. It is only an apparent value of the thermal diffusivity
of the sample material. Hence, it is called “apparent thermal diffu-
sivity (˛apparent)” in the present study. When ˛apparent is calculated
by Eq. (1), depending on whether the graphite coating layers are
included or not in the sample thickness L, we consider the following
two cases:

(3)

In order to investigate the error caused by the presence of the
graphite coating layers, the unsteady heat conduction equation
is numerically solved with appropriate boundary conditions and
�apparent/˛gr is calculated theoretically as a function of the thickness
ratio L* = Ls/Lgr with the specific thermal mass (�C)* = (�C)s/(�C)gr

as another parameter. A total of six materials are considered. They
are: ˛* = ˛s/˛gr = 0.01, 0.1, 1, 10, 100, and 1000. Fig. 1 represents
the results for both Cases and . As can be seen from the fig-
ures, �apparent determined by Case is always less than ˛s and the
value asymptotes to the accurate thermal diffusivity ˛s as the thick-
ness ratio becomes large. The effect of the specific thermal mass
ratio is found to be significant especially when the thermal diffu-
sivity ratio is less than one (Fig. 1(a) and (b)). This result shows
that the sample must be sufficiently thick when both ratios of
the thermal diffusivity and the specific thermal mass are less than
one.

If the graphite thickness is added to the sample thickness
when the apparent thermal diffusivity is evaluated (Case ),
Fig. 1 shows that the measured ˛apparent approaches to the ther-
mal diffusivity of the graphite itself for small L*, whereas it
asymptotes to the sample’s true thermal diffusivity for large
L*. In summary, If ˛* is less than or equal to 1, ˛apparent

is sensitive to both L* and (�C)* while it is sensitive only
to L* for ˛* > 1. As L* is decreased, ˛* converges to 0 in
Case since Ls ≈ 0. But it converges to 1 in Case since

L = Ls + 2Lgr ≈ 2Lgr. As L* is increased, ˛apparent/˛gr converges to the
assumed ˛s/˛gr for both Cases and .

In order to select better method among the Cases and ,
errors of the apparent thermal diffusivity is calculated by the fol-
lowing equation, and the results are shown in Fig. 2 for two typical
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Fig. 1. Apparent thermal diffusivity of graphite-coated sample: (a) ˛* = 0.01, (b) ˛* = 0.1, (c) ˛* = 1, (d) ˛* = 10, (e) ˛* = 100 and (f) ˛* = 1000.

Fig. 2. Error of apparent thermal diffusivity of graphite-coated sample: (a) ˛* = 0.01 and (b) ˛* = 1000.
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with the actual pulse. The most suitable pulse shape for the laser or
xenon flash is known as a modified exponential function [16] and
it is expressed by

W(�) =
{

1 − exp
(

�

s1

)}
exp

(
�

s2

)
(0 ≤ � ≤ te)

=
{

1 − exp
(

te

s1

)}
exp

(
te

s2

)
exp

{(
� − te

s3

)}
(� ≥ te)

(9)
4 K.-H. Lim et al. / Thermoc

aterials, ˛* = 0.01 and 1000.

rror (%) = ˛apparent − ˛s

˛s
× 100 (4)

hen ˛* is less than one, Case underestimates the thermal diffu-
ivity, and the error becomes large for small L* and (�C)*, whereas
he Case overestimates and the error is larger for small L* when
�C)* is equal to or greater than one. If (�C)* is less than one for
ase , thermal diffusivity is usually underestimated. In order to
nd accurate thermal diffusivity when (�C)* is highly different from
ne, the sample must be sufficiently thick. For example, the thick-
ess of the sample should be 1000 times greater than the graphite
oating layer for (�C)* = 0.1 and ˛* = 0.01 in Case .

On the other hand, when ˛* is greater than one, both cases
nderestimate the thermal diffusivity. For this case, the error of
ase is a little less than Case in the whole ranges of the
hickness ratio and the specific thermal mass ratio. But such bet-
erment is not appreciable. In other words, whether the graphite
oating layer thickness is included or not, the 1-layer model
an be used in very limited ranges of the ratios ˛*, L* and
�C)*.

. Theoretical formulations of the 1-layer and 3-layer
odels

In the real situation, the ideal conditions that lead to the sim-
le result of Eq. (1) are not realizable. Due to physical constraints
f the laser pulse generation equipment, it is impossible to gener-
te width-less Dirac delta function pulse. The width of the pulse is
lways finite. And since the flash pulse transmits very intense heat
n the sample surface, the flash method is always associated with
adiation heat loss from the sample to surroundings. In addition, if
he sample is coated with graphite on its surfaces, it causes delay
f the response time and the measurement time becomes a little

onger. Its effect becomes significant all the more when the sample
emperature is high. Due to these limitations, Eq. (1) cannot be used
or accurate measurement of thermal diffusivity. For a single layer
f the test material only, Cape and Lehman [2] solved theoretically
he unsteady heat conduction equation with appropriate boundary
onditions and have developed a model to take account of the radi-
tion heat losses on both the facial and radial surfaces. Their result
s given by the following expression,

T(t) = �T

∞∑
m=0

PmSm

∞∑
i=0

Di(Yr)

∫ t

0

W(�) exp
{

−ωim (t − �)
�0

}
d�

Pm = (−1)m 2˛

L

Sm

Sm
2 + 2Yx + Yx

2

Di(Yr) = 2Yr

Yr
2 + zi

2(Yr)

1
J0(zi)

YrJ0(zi) = ziJ1(zi)

ωim = −
(

L

m

)2
(

Sm
2

L2
+ zi

2

r0
2

)
(5)

ere T(t) is the rear surface temperature and �T = Q/Ct is the max-
mum temperature change of the sample; Q is the total absorbed
nergy in the sample and Ct is the total heat capacity of the sample.
m are the roots of the following equation:

Sm
2 − Yx

2) tan(Sm) − 2SmYx = 0 (6)

here Yx = 4�εxT0
3k−1L, Yr = 4�εrT0

3k−1r0. � is the Stefan-

oltzmann constant and ε is the total emissivity of the sample.
0 is the sample temperature and k is the thermal conductivity of
he sample. L is the thickness and r0 is the radius of the sample.
0 = ˛(L/�)2is the characteristic heat diffusion time, ˛ is the thermal
iffusivity of the sample and W(�) is the pulse shape function.
Acta 494 (2009) 71–79

If the sample is relatively thin, the radial heat loss can be
neglected. The basic equation that includes the heat loss effect
through the facial surfaces only and the finite pulse time effect
for the 1-layer model is obtained by simplifying Eq. (5). Cape and
Lehmann [2] presented the following equation:

T(t) = �T

∞∑
m=0

Am

∫ t

0

W(�) exp

{
−
(

Sm

�

)2 (t − �)
�0

}
d� (7)

Am = 2(−1)mSm
2(Sm

2 + 2Yx + Yx
2)

For the layered composite materials such as electronic materials
and materials which are resistant to wear, corrosion and heat, the
analytical solution is more complicate due to the boundary condi-
tions at the interfaces of the layers [18]. Heat loss effect can be taken
account of by considering exponentially decreasing heat loss terms
for layered materials. When the thermal resistance of the graphite
coating layers at both sides is explicitly considered, the thermal
flow path consists of graphite layer–test material–graphite layer
and the 3-layer model for this case is given by Blumm et al. [19] as
follows:

T(t)

=�T

[
1+2

∞∑
m=1

∑4
k=1ωkXk

∫ t

0
W(�) exp

{
−	m

2((t − �)/
3)
}

d�∑4
k=1ωkXk cos(ωk	m)

]

× exp

{
− ˇt

2(L1 + L2 + L3)

}
(8)

ω = 
1/3 + 
2/3 + 1, ω2 = 
1/3 + 
2/3 − 1
ω3 = 
1/3 − 
2/3 + 1, ω4 = 
1/3 − 
2/3 − 1
X1=H1/3
3/1+H1/2
2/1+H2/3
3/2 + 1, X2 = H1/3
3/1 − H1/2
2/1 + H2/3
3/2 − 1
X3=H1/3
3/1−H1/2
2/1−H2/3
3/2 + 1, X4 = H1/3
3/1 + H1/2
2/1 − H2/3
3/2 − 1
Hi = �iCiLi, 
i = Li/

√
˛i (i = 1, 2 and 3)

Hi/j = Hi/Hj, 
i/j = 
i/
j

This model also includes the radiation heat loss through the
facial surfaces and the finite pulse time effect. In Eq. (7), �i, Ci and Li
are density, specific heat and thickness of the ith layer of the sample
and ˇ is the heat loss factor.

If the duration of the heating pulse is very small compared to its
whole response time, W(�) is assumed to be the Dirac delta func-
tion. To correct the effect of the finite duration time of the heating
pulse, it is important to describe the shape of the pulse similarly
Here s1, s2 and s3 are time constants to adjust the pulse shape
function to the actual pulse shape. Different pulse width, which
is represented by te in Eq. (9), is used according to the heat capacity
and thermal diffusivity of the sample. In the present experiment
that follows, they are 0.06, 0.18 and 0.31 ms. The integrals inEqs.
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F

(

− 1
s1

− 1
s2

)
te

}
− 1

]]
exp(−Pt) (10)

3

grains and pores. Even though the structure is locally heteroge-
neous, since the size of the grains is very small compared with the
thickness of the coating layer, an average thermal diffusivity can
be assumed [20–22]. Araki et al. [22] suggested that if there are
ig. 3. Approximation of flash pulse shape for different values of pulse width.

5), (7) and (8) are:∫ t

0

W(�) exp
{

−P(t − �)
}

d�

=
[

s1

Ps1 − 1

[
exp

{(
P − 1

s1

)
te

}
− 1

]
− s1s2

Ps1s2 − Ps1 − Ps2

[
exp

{(
P

+ s3

Ps3 − 1

{
1 − exp

(
te

s1

)}
exp

{(
1
s3

− 1
s2

)
te

}[
exp

(
− t

s1

)
− exp

{(
P

Here P is (Xm/�)2/�0 for the 1-layer model and 	m
2/
3 for the

-layer model, respectively. It is important to choose an adequate

Fig. 4. SEM photographs of graphite coating layer:

Fig. 5. Thermophysical properties of graphite coating l
Acta 494 (2009) 71–79 75

pulse width to reduce uncertainties from the noise of the tempera-
ture rise curve at the rear surface of the sample. Fig. 3 shows a plot
of Eq. (9) for different values of te.

4. Measurement of thermo-physical properties of graphite
for use of 3-layer model

If the sample is relatively very thin or it is highly conductive so
that the temperature rising time is very fast, the thermal resistance
of the graphite coating layer is appreciable. In such cases, the 3-
layer model that analyzes the conduction heat transfer through the
3-layer structure of graphite coating layer-test material-graphite
coating layer is more appropriate to find the thermal diffusivity
of the sample material. And in order to treat the graphite coating
layer as a separate layer with the 3-layer model, homogeneity in the
graphite coating layer must be confirmed. In this study, Graphit 33
(Kontakt Chemie, Germany) was used here to stack the graphite
coating layer by spraying. The SEM photographs of the graphite
coating layer are shown in Fig. 4. The structure consists of graphite
− 1
s3

)
te

}
exp(−Pt)

]

(a) front view and (b) cross-sectional view.

ayer: (a) specific heat and (b) thermal diffusivity.
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ore than 10 grains stacked in the thickness-wise heat flow direc-
ion over the whole plane, the thermal resistance in that direction

ay be considered homogeneous. A number of samples have been
ade and it was found that the range of the coating layer thickness
as 5–15 �m with an average value of about 10 �m. Average size

f the graphite grains is about 2–3 �m long and 0.5 �m thick and
bout 20 graphite grains are stacked thickness-wise. Therefore the
hermal resistance of the coating layer in the heat-flow direction

ay be considered homogeneous over the present sample surface.
In this study, a graphite sample of uniform thickness of 0.65 mm

as formed by spraying, and the flash method was used to mea-
ure the thermal diffusivity of the one graphite layer. Specific heat
f the graphite layer was measured by DSC (differential scanning
alorimetry). The measurements were carried out in a tempera-
ure range of 25–300 ◦C. Bulk density at 25 ◦C was 509.3 kg m−3.

easured specific heat and thermal diffusivity are shown in Fig. 5.

. Experimental measurement

In this section, four typical thin solid materials are selected and
heir thermal diffusivities are calculated, and their measurement
ccuracies are to be compared. Since the comparison requires accu-
ate reference value of the sample’s thermal diffusivity, they are

easured first by the 1-layer model using Eq. (5). The materials
elected for this study are copper, aluminum, iron and Inconel 600.
heir specific heat and density in the temperature range 25–300 ◦C
re tabulated in Table 1.

As already discussed in Section 2, in order to use the 1-layer
odel to find out the thermal diffusivity as accurate as possible,

he sample must have an adequate thickness that allows the accu-
ate measurement. Based on the thermal diffusivity in Ref. [17], the
rror in the apparent thermal diffusivity of graphite-coated samples
s calculated theoretically as a function of the thickness ratio Ls/Lgr,
nd Case is used here, and the results are shown in Fig. 6. From
his study, it is found out that the minimum thickness ratio Ls/Lgr

hat yields less than 5% error are 147, 134, 61, 29 for copper, alu-
inum, iron and Inconel 600, respectively. Therefore, based on the

raphite coating thickness of about 10 �m, the sample thicknesses
or measuring the accurate reference thermal diffusivities of cop-
er, aluminum, iron and Inconel 600 are determined to be 2.997,
.998, 2.004 and 1.998 mm, respectively, that are sufficiently larger
han the required minimum thickness. The thin sample materials
re coated at both sides with graphite and their dimensions are

isted in Table 2.

The analysis model equations used to find the thermal diffu-
ivities of the selected thin materials are Eq. (7) for the 1-layer
odel and Eq. (8) for the 3-layer model. Correction for the heat loss

hrough the facial surfaces only is taken account of in both mod- i

able 1
pecific heat and density of the selected materials [17].

emperature (◦C) Copper Aluminum

Cp (J kg−1 K−1) Density (kg m−3) Cp (J kg−1 K−1) Density (kg

25 388 8890 882 2700
100 397 8874 911 2693

00 407 8858 959 2686
00 411 8841 1009 2678

Table 2
Thickness of the thin samples and coating layers.

Thickness Copper Aluminum

Lgr (mm) 0.0085 0.008
Ls (mm) 0.503 0.484
L* 59.18 60.5
Fig. 6. Theoretical error of the thermal diffusivity of the graphite-coated samples
(at 25 ◦C).

els because all samples are relatively thin as shown in Table 2. On
the other hand, in order to appreciate the effect of the finite pulse
time, the finite pulse time is either corrected or not in both models.
Finally the sample thickness is considered for the 1-layer model in
two ways as Cases and in Eq. (3). In the experiment, the laser
pulse is applied to the graphite-coated front surface and the temper-
ature at the graphite-coated rear surface is recorded as a function
of time. Then the recorded temperature rise curve is fitted to the
model equations by adjusting the thermal diffusivity. The measured
thermal diffusivity of the graphite coating in Section 4 was used in
the model equations. Here, the curve-fitting was carried by using
the nonlinear parameter estimation of Levenberg–Marquardt algo-
rithm [23]. Eqs. (7) and (8) are re-written as 	Y = 
(	X, 	�) + 	ε for
nonlinear parameter estimation where the independent variable
	X is time t, measured variable 	Y is T at time t with additive error
	ε. The dependent variables that are parameters to be estimated are
�T, ˛ and Yx in Eq. (7) for the 1-layer model for given sample thick-
ness L and �T, ˛2 and ˇ in Eq. (8) for the 3-layer model for given
sample thickness and specific thermal mass Li, (�C)i (i = 1, 2, 3) and
thermal diffusivity ˛1, ˛3, respectively. A temperature rise curve is
obtained by calculating T at 1800 temporal points on the time axis.
Summarizing, the models used in the present work are listed as
follows:
i. 1-Layer model without finite pulse time correction (Case ).
ii. 1-Layer model with finite pulse time correction (Case ).
ii. 1-Layer model without finite pulse time correction (Case ).

Iron Inconel 600

m−3) Cp (J kg−1 K−1) Density (kg m−3) Cp (J kg−1 K−1) Density (kg m−3)

450 7870 444 8340
478 7863 467 8271
523 7845 489 8320
562 7815 503 8306

Iron Inconel 600

0.008 0.011
0.199 0.101
24.88 9.18
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Table 3
Experimentally determined thermal diffusivity of the selected materials.

Thermal diffusivity (1E−6 m2 s−1) Temperature (◦C)

25 100 200 300

Copper 1-Layer (L = 0.503 mm) Case Pulse not corrected 60.362 ± 0.574 58.136 ± 0.545 54.604 ± 0.284 51.457 ± 0.261
Pulse corrected 83.457 ± 1.061 79.604 ± 1.032 73.349 ± 0.467 67.838 ± 0.384

Case Pulse not corrected 64.511 ± 0.614 62.132 ± 0.583 58.357 ± 0.303 54.994 ± 0.279
Pulse corrected 89.168 ± 1.133 85.053 ± 1.102 78.616 ± 0.502 72.507 ± 0.410

3-Layer (L = 0.503 mm) Pulse not corrected 76.013 ± 0.466 75.888 ± 0.958 74.120 ± 0.636 74.036 ± 0.772
Pulse corrected 116.756 ± 0.059 111.802 ± 0.125 106.964 ± 0.162 104.008 ± 0.001

Thick sample (L = 2.997 mm) 113.078 ± 1.069 109.661 ± 0.762 104.775 ± 0.355 100.732 ± 0.580
Aluminum 1-Layer (L = 0.484 mm) Case Pulse not corrected 52.808 ± 0.268 50.802 ± 0.331 47.063 ± 0.322 44.886 ± 0.449

Pulse corrected 71.396 ± 0.457 67.948 ± 0.551 61.455 ± 0.582 57.918 ± 0.278
Case Pulse not corrected 57.263 ± 0.290 55.088 ± 0.359 51.033 ± 0.349 48.672 ± 0.487

Pulse corrected 77.395 ± 0.495 73.660 ± 0.597 66.629 ± 0.636 62.738 ± 0.412
3-Layer (L = 0.484 mm) Pulse not corrected 64.121 ± 0.380 62.443 ± 0.578 61.595 ± 0.605 62.864 ± 0.697

Pulse corrected 90.919 ± 0.196 88.427 ± 0.126 84.988 ± 0.031 83.109 ± 0.135
Thick sample (L = 2.998 mm) 90.846 ± 0.643 88.387 ± 0.472 84.960 ± 0.346 82.568 ± 0.049

Iron 1-Layer (L = 0.199 mm) Case Pulse not corrected 12.007 ± 0.115 10.948 ± 0.050 9.339 ± 0.076 8.099 ± 0.085
Pulse corrected 14.098 ± 0.094 12.454 ± 0.253 10.463 ± 0.107 8.892 ± 0.101

Case Pulse not corrected 14.015 ± 0.134 12.780 ± 0.058 10.901 ± 0.089 9.454 ± 0.100
Pulse corrected 16.444 ± 0.144 14.574 ± 0.274 12.217 ± 0.108 10.347 ± 0.135

3-Layer (L = 0.199 mm) Pulse not corrected 14.536 ± 0.426 13.412 ± 0.099 11.656 ± 0.182 10.497 ± 0.147
Pulse corrected 17.840 ± 0.251 16.278 ± 0.128 13.807 ± 0.140 12.043 ± 0.202

Thick sample (L = 2.004 mm) 18.433 ± 0.190 16.238 ± 0.131 14.111 ± 0.090 11.934 ± 0.052
Inconel 600 1-Layer (L = 0.101 mm) Case Pulse not corrected 2.168 ± 0.009 2.078 ± 0.014 2.002 ± 0.014 1.894 ± 0.018

Pulse corrected 2.404 ± 0.012 2.285 ± 0.013 2.190 ± 0.017 2.064 ± 0.023
Case Pulse not corrected 3.215 ± 0.013 3.082 ± 0.021 2.969 ± 0.021 2.809 ± 0.027

Pulse corrected 3.565 ± 0.016 3.391 ± 0.014 3.249 ± 0.025 3.058 ± 0.032
3-Layer (L = 0.101 mm) Pulse not corrected 2.994 ± 0.011 3.043 ± 0.026 3.190 ± 0.033 3.307 ± 0.031

Pulse corrected 3.501 ± 0.024 3.589 ± 0.025 3.813 ± 0.032 4.056 ± 0.038
Thick sample (L = 1.998 mm) 3.517 ± 0.035 3.664 ± 0.017 3.887 ± 0.019 4.144 ± 0.022
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Fig. 7. Thermal diffusivity of the selected materials: (a) copper (L = 0.503 mm), (b) aluminum (L = 0.484 mm), (c) iron (L = 0.199 mm) and (d) Inconel 600 (L = 0.101 mm).

Table 4
Error of measured thermal diffusivity of the selected materials.

Error (%) Temperature (◦C)

25 100 200 300

Copper (L = 0.503 mm) 1-Layer Case Pulse not corrected −46.619 −46.986 −47.884 −48.917
Pulse corrected −26.195 −27.409 −29.994 −32.655
Theoretical −24.560 −28.386 −32.238 −36.733

Case Pulse not corrected −42.950 −43.342 −44.302 −45.406
Pulse corrected −21.145 −22.440 −24.967 −28.020
Theoretical −19.375 −23.464 −27.581 −32.385

3-Layer Pulse not corrected −32.779 −30.798 −29.258 −26.502
Pulse corrected 3.252 1.952 2.089 3.252

Aluminum (L = 0.484 mm) 1-Layer Case Pulse not corrected −41.871 −42.523 −44.606 −45.638
Pulse corrected −21.410 −23.124 −27.665 −29.854
Theoretical −20.237 −23.706 −27.326 −31.587

Case Pulse not corrected −36.967 −37.675 −39.933 −41.052
Pulse corrected −14.806 −16.663 −21.576 −24.018
Theoretical −14.877 −18.579 −22.442 −26.989

3-Layer Pulse not corrected −29.418 −29.353 −27.501 −23.865
Pulse corrected 0.081 0.045 0.034 0.654

Iron (L = 0.199 mm) 1-Layer Case Pulse not corrected −34.862 −32.575 −33.821 −32.133
Pulse corrected −23.516 −23.304 −25.857 −25.491
Theoretical −23.752 −25.737 −27.352 −28.761

Case Pulse not corrected −23.967 −21.297 −22.751 −20.781
Pulse corrected −10.790 −10.245 −13.428 −13.297
Theoretical −10.998 −13.315 −15.200 −16.845

3-Layer Pulse not corrected −21.141 −17.401 −17.397 −12.037
Pulse corrected −3.217 0.248 −2.154 0.911

Inconel 600 (L = 0.101 mm) 1-Layer Case Pulse not corrected −38.366 −43.287 −48.500 −54.293
Pulse corrected −31.647 −37.635 −43.646 −50.205
Theoretical −31.809 −37.035 −43.342 −50.057

Case Pulse not corrected −8.591 −15.894 −23.621 −32.212
Pulse corrected 1.352 −7.450 −16.422 −26.215
Theoretical 1.133 −6.617 −15.971 −25.929

3-Layer Pulse not corrected −14.879 −16.950 −17.911 −20.186
Pulse corrected −0.452 −2.049 −1.883 −2.115
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iv. 1-Layer model with finite pulse time correction (Case ).
v. 3-Layer model without finite pulse time correction.
i. 3-Layer model with finite pulse time correction.

The temperature range in the experiment was 25–300 ◦C. The
etermined thermal diffusivities with 95% confidence interval and
he errors of the six models listed above are presented in Fig. 7 and
ables 3 and 4. The errors are calculated based on the reference
alues measured with thick samples.

When one compares the results of the models (i vs. ii, iii vs. iv
nd v vs. vi), it is observed in Table 4 that correction of finite pulse
ime effect reduces the errors significantly for the thin and highly
onductive metal samples. Next, effect of including the thickness
f the graphite coating layer in the 1-layer model is scrutinized by
omparing the results of Cases and . As can be seen, Case
elps to reduce the error of the thermal diffusivity slightly com-
ared to Case . When the finite pulse time effect is corrected,
ase improves the accuracy by about 5, 7, 13 and 33% than Case

or copper, aluminum, iron, and Inconel 600, respectively at 25 ◦C.
he 1-layer model with finite pulse time correction evaluates the
hermal diffusivity up to about 33 and 28% error for Cases and
, respectively, the largest value for copper at 300 ◦C. On the other
and, thermal diffusivity determined by the pulse corrected 3-layer
odel is much more accurate than such 1-layer model. Errors are

p to about 3.3% in the whole temperature range for all materials
tudied in the present study. Therefore, it is concluded that the 3-
ayer model with pulse correction is the best one among the six

odels to determine thermal diffusivity for the thin samples. Note
hat in this case thermophysical properties of the coating layer must
e known as accurate as possible.

. Conclusions

The present study was carried out to improve the flash method
hat is used to measure the thermal diffusivity of graphite-coated
hin specimens. In the first part, assuming that the graphite-coated
ample is a single layer of uniform material, apparent thermal dif-
usivity has been defined and the variation of the apparent thermal
iffusivity for a number of different materials was theoretically cal-
ulated as a function of thickness ratio Ls/Lgr between the sample
nd the graphite coating layer with the specific thermal mass ratio
�C)s/(�C)gr as another parameter. As a result, it was found that
he apparent thermal diffusivity deviates appreciably from the true
hermal diffusivity when the material’s thermal diffusivity is high

nd sample thickness is thin compared to the coating layer thick-
ess, or when the material’s specific thermal mass is relatively
mall. In such a case, a better mathematical model for the flash
ethod is required. From this study, one can find the minimum

hickness ratio Ls/Lgr for the apparent thermal diffusivity method

[
[
[

[
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to be accurate enough to measure the graphite-coated sample’s
thermal diffusivity within a predetermined error range.

Secondly, the measurement accuracy by the 1-layer model and
3-layer model was investigated. In these models, the radiation heat
loss effect is included. And accuracy improvement by including the
effect of the finite pulse width was also scrutinized. In the 1-layer
model, neglecting the effect of the presence of the graphite coat-
ing layers, the graphite-coated sample is assumed as a single layer
of the sample material. In contrast, the 3-layer model treats the
graphite coating layers at both sides of the sample surfaces in the
best way. The model equation for the 1-layer model is that of Cape
and Lehman [2], and that for the 3-layer model is Blumm et al.’s
solution [19]. In order to use the 3-layer model, the thermophysical
properties of the graphite coating layer have been measured in this
study. A total of six different methods were used to measure the
thermal diffusivities of copper, aluminum, iron, and Inconel 600 in
a temperature range of 25–300 ◦C and their measurement accura-
cies were compared. It was found that error of the 1-layer model
with the finite pulse width correction is up to about 33% with largest
value for copper at 300 ◦C. In contrast, the 3-layer model with the
finite pulse width correction yields the measurement error of up to
about 3.3% with largest error for copper at 300 ◦C. As a conclusion,
the 3-layer model with the finite pulse width correction is the most
accurate model for measurement of thin graphite-coated samples.
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