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The ICTAC Kinetics Project is reviewed comparing the isothermal results of the various contributors, point-
ing out the various discrepancies seen. Instead of using the commercially available computer programs,
which differed between contributors, our own computer programs are written to repeat the calculations
for the methods given in the paper. The results of our methods agree very well with each other, but differ
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very much from the original paper. Reasons for this are suggested and recommendations are made to try
to get consistent results in future.

© 2009 Elsevier B.V. All rights reserved.
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Fig. 1. Thermogravimetric plots together with differential plots for calcite under

The scatter of results in the tables in Ref. [3] shows that many
mistakes must have been made. These might be caused as follows:
C.F. Dickinson, G.R. Heal / The

. Introduction

Following the Kinetics Workshop, held during the 11th Inter-
ational Congress on Thermal Analysis and Calorimetry (ICTAC) in
hiladelphia, USA, in August 1996 the ICTAC Kinetics Project was set
p [1,2]. Several sets of test data were made available and a num-
er of volunteer participants passed the data through the kinetic
nalysis methods and computer programs that they normally used.
he results were reported in detail [3] by the group and further
nalysed by individual organisers and participants [4–7]. Experi-
ental data was provided and used by all of the participants so

hat there could be no bias caused by the experiments themselves.
he purpose was to test the procedures of various workers, using
ifferent computational methods, varying computer programs and
erhaps different computers. If they had all obtained near identical
esults that would have been perfect. If one or two workers seemed
o produce results way out from the rest, then they could have been
nvited to correct their errors. In practice the results were very scat-
ered. In a later paper [8], Brown and Galwey pointed out the scatter
f results and plotted the values of activation energy Ea obtained
gainst ln(A), the log of the pre-exponential factor, from the results
resented by the study. These showed very roughly a compensation
lot. They then challenged the participants to explain their results
nd the scatter shown. In the absence of any reply to this chal-
enge, this present review has been undertaken to attempt to find
ut what went wrong with the study and to suggest what the truth

s regarding the kinetic triplet values (Ea, ln(A) and parameter n of
he kinetic equation). It will also point out which participants seem
o be most at error in their results. The computer programs used
y the participants were not available to the present authors. They
re often delivered bundled with the apparatus. Presumably if we
ad run them they would have produced results identical to those

n the paper [3] unless there had been operator error. The detail of
he programming was not available because the programs are often
ommercially produced and listings are not made available because
f confidentiality. For this reason we wrote our own programs in
ortran 77 or used the Microsoft Excel Spreadsheet program. As far
s possible all of the methods of calculation for both isothermal and
on-isothermal data were used, the latter to be reported in Part 2.
ot all of the sets of data available for the original study [3] have
een used. Because of the time and work involved in analysis, sev-
ral sets are left out. The decomposition of ammonium perchlorate
as deemed to be too complex, involving overlapping reactions, so

his was left out. To test if the analysis programs work or not, really
equires sets of simulated data. The original study used simulated
ata, but was for two overlapping reactions. It was decided that

or this paper, because of the complication of overlapping reactions
nd the extra work involved, it would be better to use data for a sin-
le reaction. If a participant could not even reproduce the starting
arameters for the simulation, then that person could have been
equested to withdraw from the study pending correction of some
aulty computer programming being used. For this reason the sim-
lated data from the original study has not been examined in any
etail but replaced by data for a single reaction mechanism. The
ata from the ICTAC study used is therefore that for calcite decom-
osition in vacuum and nitrogen, isothermal (and non-isothermal

n Part 2) conditions, with some reference to the ICTAC simulated
ata. Our simulated data was for isothermal (and non-isothermal
lso in Part 2) using a mechanism chosen to be close to that found
or the experimental results.

The data made available to the participants in this project, and

o the present authors, was unfortunately not well chosen. Each
et consists of 100 points only. Modern instruments are capable of
ogging many more than this during the run of an experiment and
omputer program can easily deal with these larger data sets. It
ppears that the data was edited to suppress many points, to reduce
vacuum at various temperatures (550, 540, 535, 530, 520, 515 ◦C). (�) experimen-
tal points; (—) curve fitted to the experimental points; (. . .) differential plot. The
differentials are re-scaled to the peak of the largest one (at 550 ◦C).

the result to 100 points only. This will cause difficulties when a
method of calculation requires differentiation of the data. Observa-
tion of Figs. 1 and 2 show that the decomposition reaction is actually
complex and seems to show many overlapping reactions. It is possi-
ble that these are just instrumental noise, but the peaks seem to be
too large for this. Also, comparing separate runs shows small peaks
at roughly similar i.e. repeatable, positions, so noise is unlikely. Thus
the decomposition of calcite is not a simple reaction and is still not
well understood. Better choices could have been made. The results
produced in this paper are not to be taken as a ‘correct’ answer for
the decomposition of calcite, but as the best that may be obtained
from the poor data used. They will, however, show up where agree-
ment between methods of calculation appear and the discrepancies
of the results of many participants.

1.1. Possible errors
Fig. 2. Thermogravimetric plots together with differential plots for calcite under
nitrogen at various temperatures (773, 750, 740, 732, 719, 710 and 700 ◦C). (�) exper-
imental points; (—) curve fitted to the experimental points; (. . .) differential plot.
The differentials are re-scaled to the peak of the largest one (at 773 ◦C).
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. Since ln(A s−1) is reported in the tables it must be made certain
that the value of A output by the computer programs is in s−1

and not min−1, especially when the supplied data is in min−1

for the experimental results but in s−1 for the simulated data.
This will not affect the E values but would cause ln(A) to differ
by ln(60) = 4.094.

B. It is the log of A that is shown in the tables, but a program might
have output A and the log taken before insertion into the report.
It might be that the wrong log was taken, i.e. it should be loge

not log10. This will again cause ln(A) values to differ.
C. If an optimisation procedure is used:

1. is it suitable for the type of results being optimised?
2. are the ‘stopping’ criteria set too high so that the optimisation

stops too soon?
. Is a mechanism chosen to be the nearest to fit the data the correct

one? For instance there seems to be disagreement amongst the
participants between Avrami–Erofeev and order equations being
the best fit.

E. What is the definition of the exponents used in the equations?
The original paper seems to confuse the definition of the letter
n. In the text the Šesták–Berggren equation is used as a general
function to show all of the types of the ˛ functions that might
be included in the rate equation.

d˛

dt
= k(˛)m(1 − ˛)n[− ln(1 − ˛)]p (1)

These terms may be used together or singly. If m = 0 and p = 0

then n is correctly interpreted as the order of reaction. In an
Avrami–Erofeev type equation m = 0, n = 1 and p has various
values. Unfortunately, in the tables in Ref. [3] and in general
literature, n is also used to define the Avrami–Erofeev equa-
tion instead of p, and is referred to as the dimension of the

able 1
inetic equations used for isothermal and non-isothermal analysis.

o. Code g(˛)

iffusion equations
1 D1 ˛2

2 D2 (1 − ˛)ln(1 − ˛) + ˛
3 D3 [1 − (1 − ˛)1/3]2

4 D4 [1 − 2/3˛ − (1 − ˛)2/3]
5 D5 [1/(1 − ˛)1/3 − 1]2

6 D6 [(1 + ˛)1/3 − 1]2

7 D7 [1 − (1 − ˛)1/3)]2 = log(t)
8 D8 [1 − (1 − ˛)1/2)]2

9 D9 [(1 + ˛)1/2 − 1]2

10 D10 [1/(1 − ˛)1/3 − 1]
11 D11 1/(1 − ˛)1/3− − 1 + 1/3ln(1 − ˛)
12 D12 1/5(1 − ˛)−5/3 − 1/4(1 − ˛)−4/3 + 1/20

vrami–Erofeev (JMA) neucleation and growth
13 A1 [−ln(1 − ˛)]1/4

14 A2 [−ln(1 − ˛)]1/2

15 A3 [−ln(1 − ˛)]1/3

16 A4 [−ln(1 − ˛)]3/4

17 A5 [−ln(1 − ˛)]2/3

rder/interface
8 F0 ˛
9 F1 −ln(1 − ˛)
0 F2 1/(1 − ˛) − 1
1 R2 [1 − (1 − ˛)1/2]
2 R3 [1 − (1 − ˛)1/3]
3 R4 [1 − (1 − ˛)2/3]

ower/exponential
4 P2 ˛1/2

5 P3 ˛1/3

6 P4 ˛1/4

7 E1 ln(˛)

is fraction decomposed, t is time, k is rate constant. Integral equation g(˛) = kt. Different
imica Acta 494 (2009) 1–14 3

Avrami–Erofeev equation. The value of p is connected to n by
p = (n − 1)/n.

Table 3 in Ref. [3] contains n with both meanings. In this paper,
to distinguish the two values of n, the n in Eq. (1) is retained so
“order” equations become:

d˛

dt
= k(1 − ˛)n (2)

or in integral form:

1 − (1 − ˛)(1−n) = (1 − n)kt (3)

but, if the equation is 1st order, n = 1 then

− ln(1 − ˛) = kt (4)

In the case of Avrami–Erofeev equations the quantity n (dimen-
sion) has been changed to n′ so that p = (n′ − 1)/n′.

F. Is the kinetic equation of the correct form?
There are two methods of defining the kinetic equations. If

the fundamental equation is taken to be the differential form
i.e. if the rate of decomposition is the basic process, then for an
Avrami–Erofeev equation.

Definition 1.

d˛

dt
= k(1 − ˛)[− ln(1 − ˛)](n′−1)/n′
The derived integrated equation is then:

n′[− ln(1 − ˛)]1/n′ = kt or [− ln(1 − ˛)]1/n′ = 1
n′ Ae−Ea/RT (6)

F(˛) Name of equation

1/(2˛) One dimension (parabolic)
−1/ln(1 − ˛) Two dimension (Valensi–Barrer)
1.5(1 − ˛)2/3/[1 − (1 − ˛)1/3] Three dimension (Jander)
1.5/[(1 − ˛)−1/3 − 1] (Ginstling–Brounshtein)
1.5(1 − ˛)4/3/[1/(1 − ˛)1/3 − 1] (Zhuravlev)
1.5(1 + ˛)2/3/[(1 + ˛)1/3 − 1] (Anti-Jander)
{1.5(1 − ˛)2/3/[1 − (1 − ˛)1/3]}/t (Kroger–Ziegler)
(1 − ˛)1/2/[1 − (1 − ˛)1/2] Two dimension (Jander)
(1 + ˛)1/2/[(1 + ˛)1/2 − 1] Two dimension (Anti-Jander)
3(1 − ˛)4/3 Interfacial transfer
3/[(1 − ˛)−4/3 − (1 − ˛)−1] Transfer and diffusion
3/[(1 − ˛)−8/3 − (1 − ˛)−7/3] Two direction diffusion

4(1 − ˛)[−ln(1 − ˛)]3/4 (Avrami–Erofeev)
2(1 − ˛)[−ln(1 − ˛)]1/2 (Avrami–Erofeev)
3(1 − ˛)[−ln(1 − ˛)]2/3 (Avrami–Erofeev)
4/3(1 − ˛)[−ln(1 − ˛)]1/4 (Avrami–Erofeev)
1.5(1 − ˛)[−ln(1 − ˛)]1/3 (Avrami–Erofeev)

Constant Zero order
(1 − ˛) 1st order
(1 − ˛)2 2nd order
2(1 − ˛)1/2 Contracting area
3(1 − ˛)2/3 Contracting volume
3/2(1 − ˛)1/3 Contracting interface

2˛1/2 Power law (half)
3˛2/3 Power law (third)
4˛3/4 Power law (quarter)
˛ Exponential

ial equation d˛/dt = kf(˛).
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efinition 2. If the integral equation is taken to be fundamental:

− ln(1 − ˛)]1/n′ = kt = Ae−Ea/RT t (7)

The derived differential equation is then:

d˛

dt
= n′k(1 − ˛)[− ln(1 − ˛)](n′−1)/n′

= n′Ae−Ea/RT (1 − ˛)[− ln(1 − ˛)](n′−1)/n′
(8)

Typical values of n′ are 3/2, 4/3, 2, 3 and 4.
Thus if n′ = 3/2 was used and Definition 1 was adhered to, then a

ifferential analysis would return the correct value of A. If integral
nalysis was used, then not A but (1/n′)A or 2/3A would be obtained.
his may well be allowed for in the output from the analysing pro-
rams used in the report. If Definition 2 was used, then an integral
ethod would return the correct A value, but a differential method
ould produce n′A or 3/2A. Again this might have been allowed for

n the analysing program. In the paper [3] there seems to be a mix-
ure of Definition 1 and Definition 2. For instance on page 138 of Ref.
3] the Johnson–Mehl–Avrami equation is defined by Eq. (5) above,
ut essentially the same Avrami–Erofeev equation is defined by Eq.
8) above. The researchers who used fitting of the Avrami–Erofeev
quation (Opfermann and Roduit) are said, in the paper, to use
he Definition 2, so there should be no difficulty. Other methods,
escribed in equation form, seem to use Definition 1 and be dif-

erential in type of analysis so the A values will be unambiguous.
owever, the Avrami–Erofeev equations seem to be by Definition 2
he values of ln(A) then will be in error by ln(3/2), or 0.4055 if differ-
ntial analysis is used. Since the actual value of n′ found (see Table 3)
as around 1.5587, the actual correction was 0.4434. Recent litera-

ure shows both definitions used. An examination of all the possible
inetic equations in Table 1 show that about seven of them do not
enerate constants in front of A, but the rest all do so.

The situation for order type equations is that Definition 1 gives
qs. (2) and (3), but the alternative equation definition of the inte-
ral form is:

− (1 − ˛)(1−n) = kt (9)

o that the differential form is:

d˛

dt
= 1

1 − n
k(1 − ˛)n (10)

here is no correction factor for 1st order kinetics, but for 0.5 order
he correction to ln(A) will be ln(2) = 0.6931.

Either definition is valid, but it should be made clear which
s being used if results from various laboratories and computer
rograms are to be compared. The question arises: were the par-
icipants asked about the form of their equations used or at least
orrected as above?

In this paper Definition 2 is always used, only because it seems
rom literature about the commercial computer programs that they
ll use Definition 2 and must have produced many of the results in
ef. [3]. Originally we used Definition 1 and this was changed to
efinition 2 between the publication about the NPK method [20]
nd this paper. The programs generating simulated data and the
nalysing program were both changed, so there is no difference in
hose results. However, the results for calcite decomposition were
sed in both publications so those in Ref. [20] and this paper do
ot exactly agree. The same consideration is also true for the non-

sothermal data in Part 2 of this series.
.2. Connection between Fn and Rn equations

Roduit, in Table 4 of Ref. [3] and in his follow up paper [6] in
able 4, reported that the data for decomposition in nitrogen fol-
owed an nth order or a contracting geometry mechanism. The
imica Acta 494 (2009) 1–14

kinetic equations are F1, F2 and R2 to R4 in Table 1. The generalised
forms are:

Fn :
d˛

dt
= Ae−E/RT (1 − ˛)n (11)

Rn :
d˛

dt
= ARe−E/RT nR(1 − ˛)(1−1/nR) (12)

They are similar in type in that they all contain (1 − ˛) raised to a
power but are derived differently, either from an order mechanism
for the Fn reactions or from a moving interface for the Rn reactions.
The ‘n’ quantity is not the same in the two cases, so we have called
the Eq. (11) quantity nR. Similarly the A values will differ, so for
the Rn equation we have used AR. If the same data is to fit the two
equations equally well, then the d˛/dt values must be the same at
the same ˛ points i.e.

ARnR(1 − ˛)(1−1/nR) = A(1 − ˛)n (13)

For this to be true, two parts of these equations must be equal.

1 − 1
nR

= n or n + 1
nR

= 1 and ARnR = A or

ln(AR) + ln(nR) = ln(A) (14)

Examination of the results of Roduit in Table 4 in Ref. [6], for
isothermal reaction, show this to be true:

n + 1
nR

= 0.092 + 1
1.101

= 1.00026 and

14.28 + ln(1.101) = 14.38

The results shown by us in our Table 4 show a similar relationship:

n + 1
nR

= 0.0639 + 1
1.0683

= 0.99997 and

13.295 + ln(1.0683) = 13.3611

Thus the two equation types Fn and Rn are not really independent
but are effectively the same.

2. Analysis of experimental and simulated data

The programs written were intended to duplicate the results in
Ref. [3] to try to find any errors in the original work. Also, some
extra methods of calculation were added for comparison and con-
firmation. All of the programs were checked for correctness and
precision by analysing simulated data derived from Eq. (6) using
n′ = 3/2 (the equivalent of p = 1/3) which is the nearest form of
the Avrami–Erofeev equation to that found in Table 3 of Ref. [3].
The other parameters used were Ea = 130 kJ/mol and A = 1013 s−1

(ln(A) = 29.9336). Temperatures used were 475, 476, 477, 478, 479
and 480 K. All of the methods tried should return these parameters
accurately if they are to be passed as fit for use.

Table 1 contains a list of all the mechanisms that were available
to be tested and these were built into the programs written.

The participants in the study reported on the fit of only some of
the equations from Table 1. Presumably all possible equations avail-
able were tried and rejected by some process and only the nearest
reported. A later paper will deal with aspects of multiple simul-
taneous kinetic processes and will show that, for this particular
decomposition, it is impossible to determine the kinetic triplet for
the whole decomposition. It is only possible for the initial phase,
where only a single kinetic process is operating. However, we had

to first examine the original ICTAC calculations, to try to find the
reasons for so many errors and variation and to be sure if a single
kinetic process was possible.

Regarding the application of statistics to the fitting of various
kinetic mechanisms. If strict statistical rules were applied, then
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Table 2
Simulated isothermal data.

Method Designation Ea (kJ mol−1) Ea (kJ mol−1) ln(A s−1) Exponent Min DEV in alpha
Mean Overall n′ = 1/(1 − p)

Non linear regression (NLR) methods
Direct grid search (OPT) OI 130.000 29.934 1.5000 2.079 × 10−6

Powell from point 1 OI 128.395 29.532 1.4991 2.300 × 10−3

Fletcher–Powell OI 130.077 29.953 1.5008 1.080 × 10−4

Nelder–Mead (simplex) integral fit OI 130.000 29.934 1.5000 2.079 × 10−6

Excel (SOLVER) OI 130.000 29.934 1.5000 2.079 × 10−6

Other kinetic equation, optimised by Nelder–Mead method only
Sestak–Berggren, p = 0.0 (as by Burnham) integral fit OI 126.855 29.587 n = 0.8782 m = 0.3433 5.617 × 10−3

Sestak–Berggren, p = 0.0 (as by Burnham) differential fit OD 129.552 30.252 n = 0.8726 m = 0.3420 6.634 × 10−4

Friedman Isoconversional analysis, integral fit (Avrami–Erofeev)
Using all data MI 130.030 29.942 A5 (1.5) 1.331 × 10−5

Other methods of analysis
NPK differential method OMD 130.011 129.801 31.758 A5 (1.5) 0.4006
NPK integral method OMI 130.003 130.001 29.938 A5 (1.5) 6.310 × 10−2
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ata from a simulated Avrami–Erofeev A5 equation using E = 130.000 kJ/mol, A = 1 ×
′ or assumed to be an A5 mechanism (n′ = 1.5). A model was assumed to obtain ln(A
ean value of Ea from the set varying with ˛. I, integer method – original data used

t would be necessary to plot residuals resulting from the pre-
erred equation against the measured value. The plot ought to
how a random scatter of points, either side of zero, with no por-
ion of the plot showing a trend. If this is carried out with the

resent data and any of the suggested equations, there are large
eaks in the plots or sinusoidal progressions. Thus the equation

s statistically invalid because there is no random scatter of the
esiduals.

able 3
alcite decomposed isothermally under vacuum.

ethod Designation Ea (
Me

on linear regression (NLR) methods
n′-Dimensional Avrami–Erofeev equation, various optimisation methods

Direct grid search(OPT) OI
Powell from point 1 OI
Powell from point A OI
Fletcher–Powell OI
Nelder–Mead (simplex) OI
Excel (SOLVER) OI

ther kinetic equation, Sestak–Berggren (as used by Burnham)
Nelder and Mead (p = 0.0) integral fit OI
Nelder and Mead (p = 0.0) differential fit OD
Nelder and Mead (p = 0.0), n held at 1.0, integral fit OI
Nelder and Mead (p = 0.0), n held at 1.0, differential fit OD

ther kinetic equations, (as by Anderson, Burnham and Desseyn).
sing NLR method with Nelder and Mead (simplex) optimization

eaction order 0.5, all ˛ OI
eaction order 1.0, all ˛ OI
eaction order 0.5, ˛ < 0.5 OI
eaction order 0.5, ˛ > 0.5 OI
eaction order 1.0, ˛ < 0.5 OI
eaction order 1.0, ˛ > 0.5 OI
ariable reaction order n, all ˛ OI

riedman Isoconversional analysis, integral fit (order equations)

eaction Order 1, all ˛ (as by Burnham) OI
eaction Order 0.5, all ˛ OI
vrami-Erofeev equation, n′ = 1.5 OI

ther methods of analysis
NPK differential fit, n′ = 1.5 OMD 225
NPK integral fit, n′ = 1.5 OMI 221

nalysed either as a general Avrami–Erofeev equation of dimension n′ , an assumed A5 mec
btain ln(A) from the Friedman plot – see text. Designation column. O, single overall value
ata used directly. D, differential method – original data has to be differentiated.
1 (ln(A) = 29.9336), analysed as a general Avrami–Erofeev mechanism of dimension
the Friedman plot – see text. Designation column. O, single overall value of Ea. M,

tly. D, differential method – original data has to be differentiated.

2.1. Data sets used and methods used

Three calculation methods were applied, following the original
paper [3]. These were non-linear regression (NLR), non paramet-

ric kinetics (NPK) and Friedman (Isoconversional). The first two
were model fitting methods. The Friedman method should be
model-free. However, the first plot of ln(d˛/dt) versus 1/T produced
model-free values of Ea, but the determination of ln(A) requires a

kJ mol−1) Ea (kJ mol−1) ln(A s−1) Exponent Min DEV in alpha
an Overall n′ = 1/(1 − p)

221.830 25.277 1.5587 9.008 × 10−3

224.068 25.612 1.5170 9.100 × 10−3

217.304 24.602 1.5218 9.817 × 10−3

221.623 25.276 1.5587 1.192 × 10−2

221.830 25.277 1.5587 9.011 × 10−3

221.830 25.277 1.5587 9.011 × 10−3

221.888 25.701 n = 0.8210 m = 0.3462 5.809 × 10−3

221.810 25.661 n = 0.8009 m = 0.3282 7.834 × 10−3

221.708 25.903 n = 1.0 m = 0.4256 1.107 × 10−2

221.423 25.850 n = 1.0 m = 0.4372 1.712 × 10−2

n

221.814 25.306 Order 0.5 3.527 × 10−2

222.426 25.102 1st order (1.0) 7.586 × 10−2

221.038 24.732 Order 0.5 3.447 × 10−2

223.136 25.241 Order 0.5 1.364 × 10−2

221.467 24.888 1st order (1.0) 4.138 × 10−2

223.584 25.688 1st order (1.0) 4.708 × 10−2

222.432 24.999 0.3238 3.018 × 10−2

n

221.763 25.371 1st order 9.097 × 10−2

221.763 26.342 Order 0.5 0.1974
221.675 25.445 A5 (1.5) 7.221 × 10−2

.564 222.816 26.647 A5 (1.5) 0.3376

.213 223.640 25.547 A5 (1.5) 9.150 × 10−3

hanism, an order equation or a Sestak–Berggren equation. A model was assumed to
of Ea. M, mean value of Ea from the set varying with ˛. I, integer method – original
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Table 4
Calcite decomposed isothermally under nitrogen.

Method Designation Ea (kJ mol−1) Ea (kJ mol−1) ln(A s−1) Exponent Min DEV in alpha
Mean Overall n

Non linear regression (NLR) methods
n-Order (Fn), various optimisation methods

Direct grid search (OPT) OI 172.808 13.361 0.0646 8.601 × 10−3

Powell from point 1 OI 181.709 14.446 0.0973 1.627 × 10−2

Powell from point A OI 163.327 12.245 0.0963 1.684 × 10−2

Fletcher–Powell OI 172.808 13.361 0.0639 8.600 × 10−3

Nelder–Mead (simplex) OI 172.809 13.361 0.0639 8.600 × 10−3

NPK differential method, assumes zero order OMD 175.729 175.366 13.495 Zero order 7.641 × 10−2

Other kinetic equations, optimised by Nelder–Mead method only
Nelder–Mead (simplex) using phase boundary model (Rn) OI 172.809 13.295 nR = 1.0683 8.549 × 10−3

Sestak–Berggren (p = 0) integral fit OI 172.739 13.478 n = 0.1451 m = 0.0585 7.147 × 10−3

Sestak–Berggren (p = 0) differential fit OD 177.384 14.134 n = 0.1943 m = 0.1236 1.659 × 10−2

Other kinetic equations (as by Anderson) NLR method n

Reaction order 0.0, all ˛ OI 172.794 13.323 Zero order 1.152 × 10−2

Reaction order 0.0, ˛ < 0.5 OI 166.464 12.575 Zero order 4.569 × 10−3

Friedman Isoconversional analysis, integral fit
Zero order, all ˛ MI 168.273 12.993 Zero order 0.1529

Other method of analysis not in the ICTAC paper
NPK integral method, assumes zero order OMI 168.429 172.994 13.301 Zero order 2.780 × 10−2
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nalysed either as a general order mechanism, phase boundary or assumed zero or
esignation column. O, single overall value of Ea. M, mean value of Ea from the set
riginal data has to be differentiated.

lot of the intercepts from the first plots against ˛ to give a new
ntercept of ln(A). The fluctuation in these plots was extreme, so that
t was impossible to plot a line. The most that can be said was that
n(A) for the nitrogen sample was ∼12 and for the vacuum sample it

as ∼24. This shows again the unsuitability of the chosen sample.
he strategy adopted was, like Burnham in the original report, to
hoose a model so that ln(f(˛)) could be calculated and included in
he plot. Then the intercept became simply ln(A). Sometimes the

odel for all the methods had to be pre-chosen (to agree with the
CTAC results), but in other results, the parameters (n′, n or m) were
llowed to vary and were determined by the method applied.

The data for calcite decomposed under vacuum and nitrogen
as used, together with our simulated data.

Table 3 in Ref. [3] shows a considerable scatter in the values
f both Ea and ln(A). The commonest equation applied was an
vrami–Erofeev type with a variable exponent n′. The analysis tech-
ique used was most often NLR (non linear regression). Data for
ecomposition at several temperatures was supplied. The analysis
rogram used arbitrarily-chosen starting values for Ea, ln(A) and
which were then optimised. For each temperature separate rate

onstants k were calculated and Eq. (6) transposed to provide a the-
retical ˛′ at each time t. The deviation of the theoretical from the
xperimental line was found as a measure of fit by:

EV =

√√√√√√
⎛
⎝ s∑

j=1

{
q∑

k=1

(˛j,k − ˛′
j,k

)2

}
/q

⎞
⎠

s
(15)

here j is the index number of a set of results at one temperature,
unning from 1 to s, and k is the index number of a set of data points
t one temperature running from 1 to q. DEV is thus averaged over
he number of data points and experimental temperatures to make
n easier comparison between data sets with different numbers of

and q. Thus DEV is the root mean square deviation of a calculated
′ point from an experimental ˛. The values of Ea, ln(A) and n′ (or
) were then optimised to reduce DEV to the lowest possible value.

The experimental data is not likely to fit exactly any equation as
s shown by Figs. 1 and 2. The differential of the data clearly shows
echanism. A model was assumed to obtain ln(A) from the Friedman plot – see text.
ng with ˛. I, integer method – original data used directly. D, differential method –

fluctuations, which probably means that a simple single reaction
is not taking place. However, for the purposes of this paper this
is ignored. That is, equations are be fitted to the data regardless
of the fact that the decomposition process may be more complex.
Since DEV reflects fitting a set of such curves, the results must be a
compromise. If other criteria are used in alternative methods then
there is no reason to expect the same set of Ea, ln(A) and n′ (or n) to
be reproduced exactly by all methods.

The first task was to find the optimum values of the parame-
ters using this definition of DEV, but by a non-optimising method.
Quicker optimising methods could then tried to get closer to the
optimum values. To carry this out the method of direct grid search
was used. Wide ranges of Ea, ln(A) and n′ were chosen (for calcite
in nitrogen, where an order equation was used, n′ was replaced
by n). The ranges of Ea and ln(A) were divided into 500 steps and
all possible values of Ea and ln(A) used to get values of DEV. If the
range of the parameter n′ were to be similarly divided, the calcula-
tion would have been very long. However, it was quickly found that
n′ only made a small change in DEV, so a simple search across n′

values was made for each of the Ea and ln(A) values. Once the mini-
mum in the table of DEV values was found, the range of Ea and ln(A)
value was narrowed and the calculation was repeated. This proce-
dure was repeated until values of Ea and ln(A) were found for the
optimum fit point to a precision of 2 × 10−3 kJ/mol in Ea, 5 × 10−5 in
ln(A) and 10−3 in n′. The results in Tables 2–4 are actually quoted to
a lower precision than this. The direct grid search results are shown
in Tables 2–4 as values of Ea, ln(A) and n′ (or n) together with the
value of DEV at that point, to show how well the theory had fitted.

Some of the methods of analysis used the value of DEV in their
calculation, but others did not. Also one method used deviation
in the time direction, instead of the alpha direction. To make all
DEV values comparable, a separate simulation or reconstruction
program was used. Whatever the method of analysis, the values
of Ea, A and n (or n′) were read into the simulation program and

compared with the experimental data to generate an independent
value of DEV. A graphical output was also generated to see visually
how close the fit was. The simulation was also carried out using
the parameters quoted in Ref. [3], which showed quickly how badly
wrong some of the results were.
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ig. 3. Surface plot for DEV against Ea and ln(A) for the data simulated using an
vrami–Erofeev equation with n′ = 1.5, fitted to an Avrami–Erofeev equation with
ariable n′ .

As expected Table 2 shows that the values of the parameters
or the simulated data are retrieved accurately. The value of DEV is
ery small, probably only reflecting the precision of the calculation
r precision of transfer of the data figures from simulation program
o the search program. The other tables showed reasonably small
alues of DEV and any attempt to refine the values of Ea and ln(A)
y smaller ranges produced no lowering in DEV.

A by-product of the direct grid search program, when using a
ide range of Ea and ln(A), were tables of DEV output into a file for

ach Ea and ln(A) value (500 × 500 points). The value of n′ could
e ignored because it had been optimised for each Ea and ln(A)
alue. A three-dimensional plot was then made from the table
sing the GNUPLOT package [9]. This was chosen because of the
ase of rotating a plot on a computer and because contour line
evels for plotting could be explicitly set. The plots are shown in
igs. 3–5.

These plots, together with the contour plots shown below, are
nly for the particular NLR method applied and the Avrami–Erofeev
quation with variable parameter n′, but are taken as the standard
nd compared with other methods and equations. The reason that
he plots are valley shaped is that points on a line running down
he base of the valley are almost equally good at producing lowest

EV values and, in fact, these lines are a type of compensation plot.
hey are the equivalent of figures given in Ref. [8].

ig. 4. Surface plot for DEV against Ea and ln(A) for the decomposition of calcite
nder vacuum using an Avrami–Erofeev equation, with variable n′ .
Fig. 5. Surface plot for DEV against Ea and ln(A) for the decomposition of calcite
under nitrogen using an n order equation.

The correspondence is as follows:

Figure numbers Figure numbers Data from tables
In this paper In Ref [8] In Ref. [3]
Fig. 6 Fig. 2 Table 3
Fig. 7 Fig. 3 Table 4

Lines that are the equivalent of those drawn in Ref. [8], for the
variation of Ea with ln(A), were drawn down the base of the valleys.
The results are more precise here because they are derived from the
original data and are not the scattered results from several inves-
tigators. The equations of these lines are given in our Table 5 and
are equivalent to the slopes and intercepts shown in Table 1 in Ref.
[8].

From Figs. 4 and 5, contour plots were derived and are shown
in Figs. 6 and 7. Higher level contours were deliberately left out
because only the positions of the valleys were of interest. The points
plotted and labelled correspond to the results reported by the var-
ious investigators. The ranges of Ea and ln(A) for the plots may be
seen in Figs. 4 and 5 to be arbitrarily chosen, but are not too widely
set, so that the experimental points are spread enough to easily
distinguish them. Some of the data in Tables 3 and 4 in Ref. [3] are
outside of these ranges and so are not shown. If the ranges had been
enlarged to accommodate them, the central part would have been
too compressed to observe. It is assumed that these missing points
are too widely off to be considered to be viable results.

2.2. Optimisation methods

A number of algorithms are available for optimisation (minimi-
sation of DEV by varying Ea, ln(A) and n). Many of these depend on
determining a direction of steepest descent, following that direc-

tion until DEV begins to rise again and then recalculating a new
direction. Some of the early work was carried out by Rosenbrock
[10]. Further developments were made by Powell [11], Fletcher and
Powell [12] and by Fletcher and Reeve [13]. The improvements were
usually in making sure that the routine could turn in direction when

Table 5
Gradient and intercept values for the lines running down the valley bases (kinetic
compensation effect parameters) for plots of Ea in kJ mol−1 versus ln(A), derived from
the data used to plot the valleys.

Taken from the data used for
the plots in figures

Gradient
(kJ mol−1)

Intercept
(kJ mol−1)

R2

Simulated Fig. 9 3.992 10.495 1.0
Calcite in vacuum Fig. 10A 6.686 52.824 0.999991
Calcite in nitrogen Fig. 10B 8.399 61.357 0.999987
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Fig. 6. Contour plot for DEV versus Ea and ln(A) for calcite in vacuum. Contours of
DEV are plotted in pairs at 0.1, 0.05, 0.02, 0.01, 0.007, reading from outside inwards.
Key to the points plotted: (A) OPT – optimum point from direct grid search by the
present authors. (B) Results in Table 1 in Ref. [3], which were derived by an NLR
method and Avrami–Erovfeev n′-dimensional equation. OPC – Opfermann corrected
– see text. OPS – Opferman sets 1 + 3, low ˛. ROD – Roduit. (C) Results in Table 1 in Ref.
[3] which were derived by other methods and equations. ANA – Anderson, n = 0.5, all
data. ANL – Anderson n = 0.5, lower data. BUS – Burnham, Šesták–Berggren equation,
m = 0.495, n = 1.0. BUL – Burnham Friedman equation n = 1, low ˛. Burnham Friedman
equation n = 1, high ˛ – too far off to show. (D) Results obtained by the present authors
by other methods – see text. SBN – Šesták–Berggren equation, Nelder–Mead optimi-
sation, m = 0.3462, n = 0.8210. NPK – non-parametric kinetics. Integral method, see
Ref. [20]. ISO – Isoconversional method. (Friedman) output from the NPK method.

Fig. 7. Contour plot for DEV versus Ea and ln(A) for calcite in nitrogen. Contours of
DEV are plotted in pairs at 0.1, 0.05, 0.02, 0.01, reading from the outside inwards. Key
to the points plotted: (A) OPT – optimum point from direct grid search by the present
authors. (B) Results in Table 4 in Ref. [3] derived by NLR method and n order equation.
ONA – Opfermann n order, all data. ONS – Opfermann n order, sets 2 + 4. ROD –
Roduit. (C) Results in Table 4 in Ref. [3] derived by other methods and equations.
ANA – Anderson equation n = 0.0, all data. ANS – Anderson equation n = 0.0, sets
2 + 4. BU3 – Burnham (773, 732 and 700 K only) Šesták–Berggren equation, m = 0.087,
n = 0.155. BUF – Burnham sets 2 + 4 Friedman equation, n = 1. BUS – Burnham sets
2 + 4 Šesták–Berggren equation. (D) Results obtained by the present authors by other
methods – see text. SBN – Sestak–Berggren equation, present authors, Nelder–Mead
optimisation, m = 0.0577, n = 0.143. NPK – non-parametric kinetics. Integral, method
see Ref. [20]. ISO – Isoconversional method (Friedman) output from the NPK method.
Fig. 8. Variation of DEV across the valley and along the valley for calcite in vacuum,
measured at the optimum point. Note the very different vertical scales.

some difficult function was being minimised and not to get stuck
at some false minimum. A completely different technique was pro-
moted by Nelder and Mead [14]. This uses a simplex, which is a
multidimensional shaped object in space, delineated by the axes
of the variables of the problem. In this case there are three vari-
ables (Ea, ln(A) and n′) and the simplex has four vertices and four
faces. Replacing one vertex at a time controls the movement of
the simplex along the valley, plus some contraction or expansion
as required. When near the optimum point the simplex no longer
moves and then only contracts onto the final position. Thus it is very
unlikely that the simplex would stick at a false optimum point.

Subroutines in Fortran are available on the Internet for some
of these methods, for instance: Powell [15], Fletcher–Powell [16],
Nelder–Mead [17]. These were adapted in programs to minimise
DEV. It is worth testing all of these various methods on the present
problem, because if they fail, that may be the reason that some of
the reported results are a long way out. The valley plots in Figs. 3–5
show that the valleys are relatively narrow and steep sided for the
calcite samples, but are rather broader for the simulated data. If
the views are rotated to look at the base of the valleys, the line
appears to be horizontal with no minimum. However, a minimum
is present, but not seen visually. DEV was calculated along a line
running down the base of the valleys and another set of results mea-
sured across the valleys at right angles to the line down the valleys.
The cross-valley position could have been chosen at any point but
was in fact placed at the optimum points. These DEV results were
plotted against ln(A) as a parameter. Fig. 8 shows the results for the
calcite under vacuum. The minimum is now clearly visible, but a
comparison of the scales of DEV shows that the variation of DEV is
very small along the valley but large across the valley. The results
for calcite under nitrogen and the simulated data showed a similar
pattern. When the optimising routines mentioned above are used
there is a danger that they may be over-influenced by the steep

sides and miss the gradient down the valley. If this happens the
routine will end up stopping at the wrong point or oscillating from
side to side of a valley, being incapable of rotating 90◦ to continue
correctly.
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Fig. 9. Contour plot of the base of the valley for simulated data using an
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vrami–Erofeev equation with n = 3/2, showing the path taken by the Powell opti-
isation method. Plot 1 contour lines. Plot 2 path taken by optimisation. The points

un from 1 to 4. The point at 2 is caused by overshoot, followed by a return to 3 and
. Does not reach the optimum point.

Similar results were obtained in the EXCEL spreadsheet using the
OLVER function. This uses an optimiser routine devised by Lasdon
t al. [18].

.3. Simulated data for Avrami–Erofeev equation with n′ = 1.5

Table 2 shows that the optimum point for this data, OPT repro-
uces the starting data used by the simulation program. The Powell
ptimisation fails even for this ‘perfect’ data as shown in Fig. 9. The
ther optimisation methods succeed in reaching the optimum point
s do the isoconversional and NPK methods. No graphical results are
resented because they would only consist of a set of contours with
ne point marked for OPT and the result for optimisation. The only
xception is shown in Fig. 9. The values of the minimum DEV in
he table vary a great deal between the methods. This is because
he correct value of DEV should be zero, but the optimum point
s not reached with equal precision in all cases so DEV is always
lightly above zero. In fact, the Nelder–Mead method seems to end
ather nearer to the starting parameters than the direct grid search

ethod.

.4. Calcite under vacuum – analysis of the results shown in Ref.
3]

It must be emphasised that the plots of the valleys were pro-
uced only from a calculation of DEV from an n′-dimensional
vrami–Erofeev equation. Other kinetic equations cannot be
xpected to fit the data in the same way so are not strictly relevant to
he valley plots. However, it is of interest to see how close results by
rder or Šesták–Berggren equations are to the valley. GNUPLOT was
sed to make contour plots instead of the three-dimensional plots.
n the same plots the ICTAC study results are shown as crosses.
ig. 6 shows the vacuum data results taken from Ref. [3], plus some
esults produced by the present authors. Some of the points are
bviously erroneous. In Table 3 in Ref. [3], the results from Malek

nd Mitsuhashi are far too low and they do not supply a value of
n(A), so this result has been ignored. Also Anderson’s result for
= 1 is too far out to fit. Desseyn et al. gave results varying with ˛,
ut it was decided only to consider single or mean values in these
lots.
imica Acta 494 (2009) 1–14 9

The result produced by Opfermann for vacuum, using the total
data, is Ea = 222.8 kJ/mol, ln(A) = 11.04 and n = 1.5543. If these figures
are put into a simulation program they are obviously wrong. The
resulting absurd ˛ values run from 10−9 to 10−11! If it is assumed
that mistake B described above has been made, then the antilog10 of
11.04 may be taken to obtain 1.09647 × 1011 for A. The correct loge

of this gives 25.42, a much more reasonable value. This produces a
point in Fig. 6, which is in fact the closest to the optimum point along
the base of the valley. The optimisation had almost reached the
optimum point. Opfermann’s result, using only two of the data sets,
produced a point only a little too far down the valley. Roduit’s value
is too far up the valley and slightly up the wall of the valley as well. It
looks as if this optimisation stopped prematurely. Results using an
order equation (Anderson and Burnham {low ˛}) are at least near
to the valley. Burnham’s use of the Šesták–Berggren equation gives
a result a long way from the valley.

None of the results examined appear to show the fault from Sec-
tion 1.1: possible error A (see above) in ln(A). That is no error is large
enough to be explained by mixing up s−1 with min−1.

If the wrong definition of kinetic equation has been used then A
must be corrected as suggested in Section 1.1 possible error F. The
original paper suggested that Opfermann and Roduit both used the
correct definition of the kinetic equation for Avrami–Erofeev with
variable n′. Any attempt to move their points on Fig. 6 to the right by
0.443 in ln(A) took them well outside of the valley and is obviously
a wrong move. The 1st order points do not require moving. The 0.5
order points require ln(A) moving by ln(2) = 0.693 to the left, which
also took them away from the valley and the optimum point. It looks
as if the correct form of the equations was used for Avrami–Erofeev,
1st order and 0.5 order.

2.4.1. Optimisation using vacuum data
2.4.1.1. Avrami–Erofeev equation use. The optimising routines were
applied to the three sets of data and the final points found are shown
in Tables 2–4.

Figs. 9–12 show some of the steps in the progress of the opti-
mising routines. The optimisation passed through many steps but
only some are indicated on these plots. These were where there was
a sharp change in direction, plus the starting and finishing points.
In Fig. 10 the original Powell calculation obviously does not work
correctly. Starting from two separate points labelled 1 and A and
following the labelled points, shows that the valley is reached and
the direction of movement turns down the valley. The optimisation
then stops, and a detailed examination of the end point shows that
the calculation is zigzagging from side to side, then stops.

Stopping criteria were examined and the precision increased,
but the result was no better. The method did not even work for
simulated data as shown in Fig. 9. The Fletcher–Powell calculations
improved on the Powell method as shown visually in Fig. 11A. How-
ever, Tables 3 and 4 show that the optimum points are not always
reached precisely enough. The last method by Nelder and Mead
shows in Fig. 12A that OPT is reached and in Table 3, the exact opti-
mum values are presented. The speed of optimisation for Nelder
and Mead was also much greater. Examination of the minimum DEV
values produced shows that much the same value was produced by
several optimisation methods. This would mean that choosing the
method by the lowest DEV produced would be very difficult. The
difficulties in selecting a model have been discussed by Vyazovkin
and Lesnikovich [19,20]

2.4.1.2. 1st and 0.5 order calculations. Attempts were made to repli-

cate the results of Anderson, Burnham and Desseyn who applied
order equations to the vacuum data. Neither type of equation got
anywhere near fitting the data. Because the order may not be exactly
0.5 or 1, a variable order was tried. The nearest fit is shown in Fig. 13,
but is not very convincing. The shape of the data curves is obviously



10 C.F. Dickinson, G.R. Heal / Thermochimica Acta 494 (2009) 1–14

Fig. 10. Contour plot of the base of the valleys for: (A) calcite in vacuum, (B) calcite in
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Fig. 11. Contour plots of the base of the valleys for: (A) calcite in vacuum, (B) calcite
itrogen, showing the paths taken by the Powell optimisation method. Plot 1 contour
ines. Plot 2 and Plot 3 paths taken by optimisations. The points and lines marked
rom 1 to 4 and V to Z (V to Y for diagram B) are attempts reach the optimum point,
PT from two starting points. They do not reach the optimum point.

othing like 0.5 or 1st order because there is an accelerating por-
ion of the curve at low ˛. The order type equations all have to pass
hrough ˛ = 0 at time = 0 and the best fitting lines do not. It is just
ossible that this may be due to an induction period, where the
ain mechanism is not followed for a period of time, during which

he sample had not reached the final decomposition temperature. A
orrection of the time scale was carried out assuming that the reac-
ion actually started at a time t0 after the start of data collection.
he delay was different for each data set temperature. Each set of
ata was first separately optimised by NLR, including t0 as an extra

actor to be determined by the Nelder–Mead procedure. The whole
ata sets were then optimised for Ea and ln(A), holding the individ-
al t0 values constant. The results for a 1st order plot were no better
han Fig. 13, but for a 0.5 order there was a slightly better fit, but
his was by no means perfect. What would really be required would

e to include the six individual values of t0 as parameters for the
ptimisation, together with Ea, A and n. However nine parameters

s beyond the capabilities of all of the optimisation methods which
nly work well for three to four parameters. Following Anderson,
he optimisation was repeated for order 0.5, only in the lower ˛
in nitrogen, showing the path taken by the Fletcher–Powell optimisation method.
Plot 1 contour lines. Plot 2 path taken by optimisation. (A) The points run from 1 to 4
with overshoot at point 2. Point 4 and OPT nearly coincide. (B) The points run from
1 to 5 with overshoot at 2 and 4. Point 5 and OPT coincide.

ranges and for 1st order in the upper range, assuming a mechanism
change around ˛ = 0.5. Again the fit was only slightly better than in
Fig. 13. The plots for these results are not shown, but the numeri-
cal results obtained are shown in Table 3. The minimum values of
DEV are not as good as for the Avrami–Erofeev equation. The upper
experimental curve is of the right shape for n = 1.0 and ˛ > 0.5, but
order 0.5 does not appear to be a good fit for the lower half. The fit
of the Avrami–Erofeev equation with n = 1.5587 is shown in Fig. 14
and, taken with the low value of DEV in Table 3, must be the more
likely mechanism.

2.4.1.3. Šesták–Berggren equation [21]. The idea seems to have
grown, more recently, that if p, in Eq. (1), is equated to zero, the
resulting equation,

d˛ = k˛m(1 − ˛)n (16)

dt

has a validity of its own.
This is now seems to be known as the Šesták–Berggren equation

and attempts have been made to fit it to experimental curves of
various shapes. Recently Criado and co-workers [22] have suggested
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Fig. 12. Contour plots of the base of the valleys for: (A) calcite in vacuum, (B) calcite
in nitrogen, showing the paths taken by the Nelder–Mead optimisation method. Plot
1 contour lines. Plot 2 path taken by optimisation. (A) The points run from 1 to 5
with overshoot at 2 and 4. Point 5 coincides with OPT. (B) The points run from 1 to
4 with overshoot at 3. Point 4 coincides with OPT.

Fig. 13. Attempt to fit an n order equation to the vacuum data by NLR method
(Nelder–Mead), with n = 0.3238.
Fig. 14. Attempt to fit an Avrami–Erofeev equation to the vacuum data by NLR
method (Nelder–Mead), with n′ = 1.5587.

a new version of this equation with an extra variable c:

d˛

dt
= kc˛m(1 − ˛)n (17)

Because equation Eq. (16) was used in the original study, we decided
use that and not Eq. (17) to make comparisons easier. The meaning
of Eq. (16) and the use of Eq. (17) will be covered in a later paper.

Burnham has suggested this equation as a fit to the data. It is
not stated how this was done, considering that the equation does
not integrate. It is possible to apply numerical differentiation of
the original data and to fit the theoretical d˛/dt to the experi-
mental values. In view of the fluctuations shown in Figs. 1 and 2,
this is not likely to be very precise. For Nelder–Mead optimi-
sation in a Fortran77 program, numerical integration could be
used for the Šesták–Berggren equation. This was carried out by
the Clenshaw–Curtis method, in a routine called intcc, found at
a website provided by Ooura [23]. This should give more precise
results than the differential method as is shown in Table 3. Com-
pare differential and integral results under the headings:-‘other
kinetic equation, Šesták–Berggren’ and ‘other methods of analysis’

at the bottom. Slightly different parameters to those of Burnham
were obtained. The fit of the theoretical curve to the original data
is shown in Fig. 15 and is marginally better than the fit for the
Avrami–Erofeev equation in Fig. 14. Observation of the diagrams

Fig. 15. Attempt to fit a Šesták–Berggren equation to the vacuum data by NLR
method (Nelder–Mead), with n = 0.8210 and m = 0.3462.
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The Šesták–Berggren equation was a further complication, in
this case by having two determinable parameters, n and m. The
values of the parameters determined by us again differed slightly
from those of Burnham. The plot of the fitting of the data in Fig. 18 is
2 C.F. Dickinson, G.R. Heal / The

f the fitting of the equation, Figs. 14 and 15, showed that some-
imes the fit is better at the top of the data and sometimes at the
ottom, so there is no unique answer.

When Burnham’s result (BUS) and the result from Nelder and
ead’s (SBN) optimisation were plotted on Fig. 6 the points were
ell away from the valley. It might be that if Criado’s new equa-

ion, Eq. (17), had been applied then the Šesták–Berggren results in
ig. 6 might have been closer to the optimum point. It was assumed
hat the valley would be in a different place if produced for the

ˇesták–Berggren equation instead of for Avrami–Erofeev.

.4.2. Other calculations with the vacuum data
The NPK (non-parametric kinetics) method uses SVD (singular

alue decomposition) and has been described for isothermal data
nalysed by an integral and a differential method [24]. It was shown
hat the integral analysis was the most efficient, so this has been
pplied to the present data and the results entered into Table 3. The
gures obtained are close to the optimum values even though the
alculation depends upon a different principle (decomposition of a
atrix) and not upon DEV. Although DEV is not calculated during

he NPK method, it was determined using the simulation program
s a measure of fitting of the theory and is marked as NPK in Fig. 6.
t was convenient to include in the NPK program a calculation by
n isoconversional or Friedman method. This produced values of Ea

nd ln(A) at pre-chosen values of ˛. Here ˛ was in steps of 0.05. A
lot of Ea versus ˛ was usually near a horizontal straight line except

or a few figures at low ˛. The rest of the Ea and ln(A) values were
veraged to produce the figures given in Tables 1 and 2. Since the
PK method has to assume a kinetic equation the Avrami–Erofeev
ith n′ = 1.5 was used, with the 1st order equation used by Burnham

s an alternative. It may be seen from Table 1 that the results are not
ery close to OPT, but they are from a different method of calculation
o that used in the determination of the valley and OPT. For this
eason no attempt has been made to calculate the minimum in DEV,
xcept for the Avrami–Erofeev equation with n′ = 1.5 because this is
ery close to the value when n is allowed to vary, when it comes
ut as about 1.5587.

.5. Calcite under nitrogen – analysis of the results in Ref. [3]

The direct grid search method was again used for this data to
roduce the OPT result for comparison with other methods and the
ef. [3] results.

The tables in Ref. [3] showed results not quite as scattered as
or those under vacuum. The results produced by Malek and co-

orkers were left out for the same reasons as above. Several Ref.
3] results lie in the valley, but too far up. This again suggests that
ptimisation has stopped prematurely with little or no progression
own the valley. It could be that the wrong form of the kinetic equa-
ion was used (as explained above in Section 1.1: possible error F).
rom Eq. (9), the correction to ln(A) would be ln(1/(1 − n)). Since
was about 0.0639, the correction would be 0.0660. Examination

f Fig. 7 showed that such a small correction makes practically no
ifference to the points but only takes them away from the valley.
or the other types of equations there is no correction for 1st order
r for zero order.

.5.1. Optimisation using nitrogen data
Fig. 16 shows an attempt to fit various orders to this data. It

hows that the data plot is only slightly curved and lies somewhere
etween a 0.5 order and zero order curves. For this reason using an

rder type plot with variable value for n seems to be the best solu-
ion, so Eq. (3) was used in the optimisations. Fig. 10B shows that
he Powell method does not work for the nitrogen data either. Rea-
onable results are produced by Fletcher–Powell and Nelder–Mead
ethods. The OPT point is reached in each case. Table 4 shows the
Fig. 16. Plot of the nitrogen data at 700 ◦C only. Attempts to fit equations for zero,
0.5, 1st and nth (n = 0.0996, differs from the result for multiple temperatures) order
by NLR method (Nelder–Mead).

precision produced, and Fig. 17 shows the closeness of the fit. The
result obtained by the Nelder–Mead method is very close to the
optimum value. The result from Anderson [3] is surprisingly close to
the optimum value considering that he assumed zero order. Obser-
vation of the plot in Fig. 16 shows a gentle curve, not a straight line.
A 1st order plot is also not feasible, as shown in Fig. 16. This time
the original plot seems to start at the origin and the curvature is
always in the same direction. Therefore, adjusting a value of zero
time, t0, does not help. Table 4 contains the results for the fitting
of a zero order equation. The minimum deviation is, as expected,
much higher than for the other methods. Anderson did not quote
a range of ˛ for his fitting so at first the whole range was used for
one analysis. As an alternative, data for ˛ < 0.5 only was used. The fit
then seemed much better. The value of DEV, shown in Table 4, then
appeared to be lower than for many other methods. This could mean
that the first part of the decomposition follows zero order but slows
slightly when ˛ > 0.5 to a new mechanism, with n of about 0.0639.

An attempt to use the Avrami–Erofeev equation to fit this data
was, as expected, a complete failure because the experimental data
does not have the sigmoid shape that would be required.
Fig. 17. Attempt to fit an order equation to all of the nitrogen data, with n = 0.0639.
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ig. 18. Attempt to fit a Šesták–Berggren equation to all of the nitrogen data, with
= 0.1451, m = 0.0585.

lmost indistinguishable from the n order method in Fig. 17. How-
ver, at the top end of the plots, above ˛ = 0.9, the line curves to the
ight to a greater extent and the Šesták–Breggren function follows
his better. The value of DEV, shown in Table 4, is actually slightly
etter than for the n order equation. Strictly speaking a new valley
nd OPT point should be drawn up using the Šesták–Berggren equa-
ion to compare with the value produced by optimisation. However,
he results from the two equations are very close and the point in
ig. 7, corresponding to the use of the Šesták–Berggren equation,
ies in the valley produced for the Avrami–Erofeev equation, close
o OPT.

.5.2. Other calculation for nitrogen data
The NPK method may not be satisfactory in this case because it

as to assume a function for a chosen mechanism. The nearest pos-
ible mechanism, in this case, is zero order. The result is in Table 4
nd shows values of E and A close to the optimum values, but DEV
s not as low as for the other methods.
. Variation in Ea with alpha

The NPK method allows the calculation of one value of Ea from
n overall matrix of all of the data (reported in Tables 2–4) and as
eparate Ea values from the matrices for sets of individual steps of

ig. 19. Variation of Ea with ˛ for the vacuum and nitrogen samples calculated by
he NPK method using integral data.
Fig. 20. Variation of Ea with ˛ for the vacuum and nitrogen samples calculated by
the NPK and Friedman methods using differentiated data.

five data points at a time. These are from the interpolated sets of
data, not the original experimental sets. For an explanation, see Ref.
[24]. The values of Ea are plotted in Fig. 19 for the vacuum sample
and the nitrogen sample, using integral data i.e. the original data.
The mean of these values is shown in the tables, as well the overall
figures from the total matrix calculation. Fig. 20 is a similar plot,
but uses a differential method i.e. the original data has to be differ-
entiated first. The Isoconversional or Friedman method also gives
the variation of Ea and is shown for comparison. It is obvious from
Fig. 20 that the differential methods are not suitable for these sam-
ples and should not be used. The fluctuations are considerable and
reflect the differentiated results shown in Figs. 1 and 2. Considering
the integrated data only, the vacuum result showed only slight vari-
ation across the range with a standard deviation of 3.0 kJ/mol, while
the nitrogen result showed a slight continuous rise with a standard
deviation of 5.5 kJ/mol. These results are useful for comparison with
the non-isothermal results in Part 2.

4. Conclusions

The experimental data used in the ICTAC study and in this report
is almost certainly not suitable to produce firm conclusions about
the kinetic triplet values or the mechanism followed. However the
original study was to compare results from several laboratories,
so in some ways the actual values of parameters obtained are less
important than the comparisons between laboratories and instru-
ments. Therefor readers should not take these results as definitive,
precise results for the decomposition of calcite. There seem to be
several reactions taking place together, so the results just indicate
general values, averaging out the figures for the set of reactions
taking place.

In their paper [8], Brown and Galwey remarked “Who is to
decide and for what reason that some results are to be identified
as ‘faulty’?” This is true in the sense that it is possible to argue
that one kinetic equation or another is the best fit to the data, and
which optimisation method should be used. It is especially true if
the argument is over the fit in one range of ˛ being better than
another. Vyazovkin and Lesnikovich [25] have clearly shown that
the incorrect function will lead to errors in the Arrhenius param-
eters. However in this paper the Avrami–Erofeev equation with

variable n′ was adopted because it was the equation used by the
majority of investigators; thus everyone should be able to repro-
duce the parameters Ea, ln(A) and n′. As for a correct answer, we
believe that this is the optimum point obtained by Direct Grid
search, but it is a time consuming method. The points plotted as OPT
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ie on the base of their valleys and at the minimum point according
o the contour plots in Figs. 6 and 7 and at the minimum indicated
n Fig. 8.

The first conclusion from the result tables in Ref. [3] and the
lots, Figs. 6 and 7, is that there is no agreement at all. Brown
nd Galwey [8] have commented on this at length. Figs. 9–12 show
hat some optimisation methods fail or are less satisfactory, but a

ethod such as that of Nelder and Mead always reaches the point
PT. The second conclusion is that there must be faults in the pro-
ramming of the analysis systems used by many of the contributors.
rown and Galwey [8] have invited the contributors to look again
t their programming to find out why they cannot agree. They may
ave used the wrong optimisation technique or have set the preci-
ion for the stopping of optimisation to be too high. It was shown in
ig. 8 that the slope along the valleys is low, so it is easy to stop short
f the optimum point. We now invite them to show why they do
ot get the optimum points described here. If they do not respond
o this, then the results from these programs, including some com-

ercial products supplied with equipment, must be regarded as
uspect. The programs need to show that they can at least accu-
ately retrieve the parameters for a single kinetic equation such as
he simulated one described above.

It was not in the remit of the study to examine the mecha-
ism of the decomposition suggested by the equations. However,
ince a decision is required between several possible mechanisms
t is helpful to consider this. The value of n′ suggested by the
vrami–Erofeev equation fit is about 1.5587. This is close to the
alue of 1.5, which is the standard value for one of the versions of
he Avrami–Erofeev equation. This has been stated by Hulbert [26]
o be derived from diffusion controlled mechanism in either, nee-
les with a constant rate of nucleation, or in spheres with a zero rate
f nucleation. The present results do not quite fit this mechanism,
ut this may be due to several extra factors e.g. unequal particle
izes, inhomogeneous temperature, strain in some crystals or impu-
ities or a more complex mechanism. However, it looks as if the

ajor part of the decomposition is by this mechanism. Alternative
echanisms suggested were 0.5 or 1.0 order. To obtain a reason-

ble fit the time scale had to be changed and/or the range had to be
plit at ˛ = 0.5. This is possibly correct but gives the impression of
training the theory to try to force a fit. Burnham has suggested the
se of the Šesták–Berggren equation. In their original paper [21]
hese authors looked at a series of mechanisms which produced
series of functions of ˛ and they commented that they fell into

hree types. They then put these together in a single, generalised
q. (1). They did not seem to mean that the parameters m, n and
could have a wide range of numerical values but only the stan-

ard values that appeared earlier in their paper (from the generally
ecognised equations at the time, or devised later, provided there
as some underlying mechanism to suggest them). They pointed

ut that there was no known mechanism which produced values
or m, n and p simultaneously. It is a mistake then to try to fit this
quation to any chosen data and to allow the parameters to have

ny value that seems to give a good fit, when there is no mechanism
rom which this is devised. The process is the same as saying that

polynomial equation can be fitted exactly to any data provided
ufficient number of terms is included and there is not a theoretical
eaning to the result.

[
[
[
[
[

imica Acta 494 (2009) 1–14

In the case of the nitrogen results, an order equation seems to fit
with an n value of about 0.0639. The meaning of this is unclear. As
stated above, it may mean that the mechanism is mainly zero order
with some deviation away as more of the calcite is used up. The
Šesták–Berggren equation has an extra parameter added because
m was allowed to vary. This is a further, unnecessary complication,
because there is no mechanism suggested to explain the values of
n and m found.

The NLR method is only valid if careful checks are made to ensure
that the true minimum or optimum point is reached. The results in
Ref. [3] do not achieve this. A mechanism should be identified from
the results. Often several seem to be equally valid, but there is no
point in choosing an equation which has no theoretical basis (other
than a suggestion that it may be autocatalytic [27]). Equally, fitting
equations to only part of the range, just to produce a low value of
DEV is only valid if there is good evidence for a change of mech-
anism. In the present study for vacuum data the Avrami–Erofeev
equation seems to be the best fit with n′ = 1.5587. This seems to
indicate that really n′ = 1.5, but there are minor fluctuations from
a simple mechanism causing the experimental value found. In the
case of the nitrogen data, the nearest mechanism seems to be zero
order, but as part of the sample is used up, the rate reduces steadily,
causing an apparent order of n = 0.0639.
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