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. Introduction

The organisers of the original ICTAC study supplied non-

weighted, parallel, first-order reactions) was also partially analysed
by us.

The problems associated with analysing this data are somewhat
sothermal data for calcite decomposition in vacuum and nitrogen.
hese samples were heated at rates of 1.8, 2.5, 3.5, 5.0, 6.2 and
0 K/min in nitrogen and 1.0, 3.0, 5.0, 7.5, 10, 15 and 25 K/min
nder vacuum. The simulated data from the study (two equally-

∗ Corresponding author. Tel.: +44 1625 874850.
E-mail address: roger heal@yahoo.com (G.R. Heal).

1 Formerly of: Department of Chemistry and Applied Chemistry, University of
alford, Salford, M5 4WT, UK.

040-6031/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2009.05.009
different from those for isothermal data in Part 1 (previous paper).
Firstly, there are a larger number of different methods of analy-

sis.
Secondly, there is the problem of evaluating the integral of the

exponential term in the Arrhenius equation, usually represented

by p(x), where x = Ea/RT. The evaluation of this quantity for various
values of T has traditionally been made by various approximating
functions, summarised in Ref. [1]. In this paper the evaluation has
been carried out mostly by Chebyshev polynomials described in
Ref. [1]. These have already been shown to produce precise values,

http://www.sciencedirect.com/science/journal/00406031
http://www.elsevier.com/locate/tca
mailto:roger_heal@yahoo.com
dx.doi.org/10.1016/j.tca.2009.05.009
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Table 1
Simulated non-isothermal data.

Method Designation Ea (kJ mol−1) Ea (kJ mol−1) ln (A/s) Exponent min DEV in ˛
Mean Overall n′ = 1/(1 − p)

Non linear regression (NLR)
Direct grid search, n′-dimensional Avrami–Erofeev equation OI 130.000 29.934 1.9999 4.941 × 10−7

Nelder–Mead( (simplex)
A. Standard Avrami–Erofeev equation, n′ = 2.0 OI 129.999 29.933 (A2) (2.0) 8.119 × 10−8

B. n′-dimensional Avrami–Erofeev equation OI 129.999 29.933 2.0000 8.017 × 10−8

C. Sestak–Berggren equation OI 130.045 30.666 n = 0.8035 m = 0.5066 7.540 × 10−4

Flynn & Wall MI 129.992 29.933 (A2) (2.0) 5.881 × 10−4

Ozawa MI 130.980 30.637 (A2) (2.0) 0.16372

NPK (differential fit)
A. Standard Avrami–Erofeev equation, n′ = 2.0 OMD 130.009 130.027 29.942 (A2) (2.0) 5.29 × 10−4

B. n′-Dimensional Avrami–Erofeev equation OMD (As A) (As A) 29.941 1.9996 9.201 × 10−6

C. Sestak–Berggren equation OMD (As A) (As A) 29.969 n = 0.8040 m = 0.5069 7.544 × 10−4

Friedman Isoconversional n′ = 2.0 MI 130.062 30.004 (A2) (2.0) 1.969 × 10−5

Li and Tang MD 129.986 – – –
Coats and Redfern MI 129.778 29.751 1st order 0.12326
Kissinger 5 points OD 129.724 29.868 (A2) (2.0) 1.993 × 10−3

Akahira and Sunose MI 129.778 29.819 (A2) (2.0) 2.156 × 10−2

Kofstad OD 129.998 29.931 8.831 × 10−4

Ingraham and Marrier OD 126.344 23.718 (A2) (2.0) –

Other methods not in the ICTAC paper
NPK (integral fit)

A. Standard Avrami–Erofeev equation, n′ = 2.0 OMI 129.998 129.998 29.933 (A2) (2.0) 6.957 × 10−6

B. n′-Dimensional Avrami–Erofeev equation OMI (As A) (As A) 29.933 2.0000 1.384 × 10−7

C. Sestak–Berggren equation OMI (As A) (As A) 29.962 n = 0.8036 m = 0.5068 7.541 × 10−4

Vyazovkin MI 130.00 29.934 (A2) (2.0) 6.791 × 10−5

Simulated from an Avrami–Erofeev equation (A2), using Ea = 130.000 kJ/mol, A = 1013 s−1, (ln (A) = 29.934), n′ = 2.0, analysed either as a general Avrami–Erofeev mechanism of
dimension n′ or assumed (A2) mechanism. Where no ln(A) was generated by the method, no value is quoted. The Ingraham and Marrier method only gives A′ , the temperature
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The various techniques are listed in the Tables 1–3 and illus-
trated in Figs. 3–9. The details of these calculations are given in Ref.
[2] or may be found in the references given below.
oefficient of A. Designation column. O: single overall value of Ea. M: mean value of Ea

ethod – original data has to be differentiated.

ot an approximation, and may be evaluated up to the maximum
recision of variables held in a computer program.

Thirdly, the temperature range covered is larger than for isother-
al experiments and there is the likelihood of a change in Ea as ˛

ncreases because temperature is rising at the same time.
In this paper an attempt is made to reproduce results from all

f the methods listed in the original paper [2]. The results are com-
ared to see if consistent best values of Ea and A can be established.
ach method is considered using in turn the non-isothermal data for
alcite decomposing under vacuum and nitrogen. To test the meth-
ds and to check on the performance of the computer programs,
on-isothermal simulated data was made up using a value of Ea

f 130.0 kJ/mol and A of 1.0 × 1013 s−1 and a single kinetic equa-
ion (A2) from Table 1, Part 1. Also, the simulated results for two
eactions combined, provided for the ICTAC study in Ref. [2], were
nalysed.

In the tables of results, Tables 1–3, a designation of calcula-
ion type is shown. Designation ‘O’ means that a method yields
nly single overall values of Ea and A. Other methods, designated
y ‘M’, produce a set of Ea and A values varying with the degree
f decomposition ˛. The mean of these values is what is shown

n the tables. Some methods may, of course yield both mean val-
es and overall values, which are not necessarily the same. The

CTAC paper results [2] only gave single values, but it is essential
o show the variation if possible. The variation in Ea is, however,
hown in the follow-up paper by Vyazovkin [3], for some of the
CTAC data. The methods are further divided between ‘I’ for integral

ethods if the deviation of the integral plot of ˛ versus tempera-

ure is matched against the theoretical plot, and ‘D’ for differential

ethods if d˛/dt is matched. Differential methods mean that differ-
ntiation of the data is required at some point. Figs. 1 and 2 show
he results of applying this to the two sets of data. The plots are
ery similar to Figs. 1 and 2 in Part 1 for isothermal results. The val-
the set varying with ˛. I: integer method – original data used directly. D: differential

ues of d˛/dt have been rescaled to 0–1 separately for each heating
rate because the value of (d˛/dt)max differs greatly between heating
rates. The irregular shape of the gradient plots forecasts, similarly to
the isothermal case, that the differential methods will not be very
precise.

2. Methods of calculation
Fig. 1. Thermogravimetric plot together with differential plots for calcite decom-
posed under nitrogen at various heating rates (1.0, 3.0, 5.0, 7.5, 10.0, 15.0 and
25.0 K min−1); (�) experimental points; (- - - -) curve fitted to the experimental
points; (. . . .) differential plot. The differentials are re-scaled to appear as all the
same peak height.
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Table 2
Calcite decomposed non-isothermally under nitrogen.

Method Designation Ea (kJ mol−1) Ea (kJ mol−1) Ea (kJ mol−1) ln(A/s) Exponent n Min DEV in ˛
Mean (all) Mean (˛ > 0.1) Overall

Non linear regression (NLR)
Direct grid search variable n OI 194.309 15.838 0.1311 1.112 × 10−2

Nelder–Mead(simplex)
A. Standard zero order OI 192.207 15.507 Zero order 1.907 × 10−2

B. Near zero order (Fn) OI 194.310 15.838 0.1311 1.112 × 10−2

C. phase boundary (Rn) OI 194.325 15.699 1.1510 1.112 × 10−2

D. Sestak–Berggren equation OI 193.893 15.872 n = 0.1923 m = 0.0357 1.076 × 10−2

Flynn and Wall MI 194.389 193.198 15.939 Zero order 7.388 × 10−2

Ozawa MI 200.329 199.511 17.301 Zero order 0.4902

NPK (differential fit) as by Sempere
A. Zero order equation OMI 192.962 193.397 192.894 15.760 Zero order 7.349 × 10−2

B. n-Order equation OMI (As A) (As A) (As A) 15.663 0.1198 1.136 × 10−2

C. Sestak–Berggren equation OMI (As A) (As A) (As A) 15.068 n = 0.1928 m = 0.0409 1.087 × 10−2

Friedman Isoconversional MD 193.091 193.481 16.071 Zero order 2.086 × 10−2

Li and Tang MD 190.938 191.140 – – –
Coats and Redfern MI 194.467 193.280 16.824 1st order 0.1082
Kissinger 15 points OD 193.182 15.754 Zero order 5.639 × 10−2

Akahira and Sunose MI 193.875 192.678 16.462 Zero order 0.4297
Kofstad OD 187.052 14.973 Zero order 3.935 × 10−2

Ingraham and Marrier OD 176.268 4.756 Zero order –

Other methods not in the ICTAC paper
NPK (integral fit)
A. Zero order equation OMI 194.285 193.991 194.299 15.659 Zero order 4.025 × 10−2

B. n-Order equation OMI (As A) (As A) (As A) 15.837 0.1311 1.112 × 10−2

C. Sestak–Berggren equation OMI (As A) (As A) (As A) 15.225 n = 0.1925 m = 0.0339 1.078 × 10−2

Vyazovkin MI 194.580 193.284 – 16.727 Zero order 0.5898

Analysed either as a generalised order equation, phase boundary or an assumed 1st or zero order equation. Where no ln(A) was generated by the method, no value is quoted.
The Ingraham & Marrier method only gives A′ , the temperature coefficient of A. Designation column. O: single overall value of Ea. M: mean value of Ea from the set varying
with ˛. I: integer method – original data used directly. D: differential method – original data has to be differentiated.

Table 3
Calcite decomposed non-isothermally under vacuum.

Method Desig-nation Ea (kJ mol−1) Ea (kJ mol−1) ln(A/s) Exponent min DEV in ˛
Mean (all) Overall n′ = 1/(1 − p)

Non linear regression (NLR)
Direct grid search, n′-dimensional Avrami–Erofeev equation OI 120.030 10.118 1.9614 1.844 × 10−2

Nelder–Mead(simplex)
A. Standard Avrami–Erofeev equation n′ = 2. OI 119.193 9.997 (A2) (2.0) 1.865 × 10−2

B. n′-Dimensional Avrami–Erofeev equation OI 120.042 10.120 1.9613 1.844 × 10−2

C. Sestak–Berggren equation OI 120.193 10.919 n = 0.8776 m = 0.5181 1.782 × 10−2

Flynn and Wall MI 124.003 11.139 (A2) (2.0) 0.1813
OzaO Ozawa MI 130.682 12.569 (A2) (2.0) 0.3366

NPK (differential fit) as by Sempere
A. Standard Avrami–Erofeev equation n′ = 2 OMI 102.496 104.055 8.052 (A2) (2.0) 0.1461
B. n′-Dimensional Avrami-–Erofeev equation OMI (As A) (As A) 7.865 2.2069 3.859 × 10−2

C. Sestak–Berggren equation OMI (As A) (As A) 7.932 n = 0.8185 m = 0.5637 3.843 × 10−2

Friedman Isoconversional MD 102.402 8.113 (A2) (2.0) 0.2816
Li & Tang MD 111.184 – – –
Coats and Redfern MI 124.030 11.768 1st order 0.1211
Kissinger 25 points OD 124.010 10.628 (A2) (2.0) 4.026 × 10−2

Akahira and Sunose MI 123.299 13.089 (A2) (2.0) 0.6429
Kofstad OD 100.590 7.999 (A2) (2.0) 0.3482
Ingraham and Marrier OD 96.354 −1.636 (A2) (2.0) –

Other methods not in the ICTAC paper
NPK (integral fit)

A. Standard Avrami–Erofeev equation n′ = 2 OMI 123.686 124.594 10.609 (A2) (2.0) 8.171 × 10−2

B. n′-Dimensional Avrami–Erofeev equation OMI (As A) (As A) 10.733 1.8956 2.018 × 10−2

C. Sestak–Berggren equation OMI (As A) (As A) 10.852 n = 0.8977 m = 0.5056 1.948 × 10−2

Vyazovkin MI 123.979 – 13.594 (A2)(2.0) 0.6448

Analysed either as an assumed (A2) mechanism, a generalised Avrami–Erofeev equation (variable n′), or as a 1st order mechanism Where no ln(A) was generated by the
method, no value is quoted. The Ingraham and Marrier method only gives A′ , the temperature coefficient of A. Designation column. O: single overall value of Ea. M: mean
value of Ea from the set varying with ˛. I: integer method – original data used directly. D: differential method – original data has to be differentiated.
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Fig. 2. Thermogravimetric plots together with differential plots for calcite decom-
posed under vacuum at various heating rates (1.8, 2.5, 3.5, 5.0, 6.2 and 10.0 K min−1);
(�) experimental points; (- - - -) curve fitted to the experimental points; (. . . .) differ-
ential plot. The differentials are re-scaled to appear as all the same peak height.

Fig. 3. Comparison of reconstructed curves with original data, using various kinetic
equations. Sample: calcite decomposed in nitrogen. One heating rate only, 10 K/min.
Plots 1, 4 and 5 are coincident over most of the range.

Fig. 4. Comparison of reconstructed curves with original data, using various kinetic
equations. Sample: calcite decomposed under vacuum. One heating rate only,
1.5 K/min.

Fig. 5. Activation energy versus ˛ for various calculation methods. Sample: data
simulated for Avrami–Erofeev equation (A2) (extended ordinate scale). Several plots
are near coincident.

Fig. 6. Activation energy versus ˛ from an analysis by the NPK differential method
only. Sample: Data simulated for Avrami–Erofeev equation (A2) with sets of 100 and
500 points (extended ordinate scale).

Fig. 7. Activation energy versus ˛ for various calculation methods. Sample: Simu-
lated data provided for the ICTAC report (two 1st order reactions combined). Plots 1,
2, 3 and 6 are coincident and appear as a single black line (expanded ordinate scale).
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Fig. 8. Activation energy versus ˛ for various calculation methods. Sample: Data
calcite decomposed in nitrogen. Plots 1, 2 and 3 are coincident and appear as a single
black line.
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A ‘general method’ by Desseyn is described in the ICTAC report
with an equation given as:
ig. 9. Activation energy versus ˛ for various calculation methods. Sample: Data
alcite decomposed under vacuum. Plots 1, 2 and 3 are coincident and appear as a
ingle black line.

ethod Ref.

oats and Redfern [4]
zawa [5,6]
lynn and Wall [7]
i and Tang [8,9]
kahira and Sunose [10]
PK [11–13]
riedman (Isoconversional) [14]
This result was obtained as part of the NPK calculation)

Kofstad [15]
Ingraham and Marrier [16]
Kissinger [17,18]
Freeman and Carroll [19–22]

o these has been added a technique, not mentioned in Ref. [2], but has been
eferred to in Ref. [3]

Vyazovkin [23–26]

In the tables in Ref. [2] Desseyn refers to the Ozawa method,
hile others use the Flynn, Wall and Ozawa method. We have

ssumed that Desseyn means the original Ozawa method and the
thers mean the Flynn and Wall modification of the Ozawa method.
e have therefore used separate calculations for the original Ozawa
ethod and the Flynn and Wall methods. Similarly, the Akahira and
unose method is a modification of the Kissinger method, but some
orkers appear to have used the original Kissinger method. For this

eason we have used the two methods separately.
imica Acta 494 (2009) 15–25 19

There are, of course, other methods available, but we have only
used the ones in the original paper [2], plus Vyazovkin’s method
[23–26]. Two other methods, mentioned later, were tried and
rejected.

The details of these methods are mostly given in Ref. [2]. The
equation suggested by Akahira and Sunose [10] is:

ln

(
ˇ

T2

)
= ln

(
AEa

g(˛)R

)
− Ea

RT
(1)

where ˇ is heating rate.
This is an extension of the Kissinger method [17,18] applied

through all of the range of ˛ instead of only at the position of the
peak in d˛/dt versus T. For ˛ constant, the plot of ln(ˇ/T2) versus
1/T is made from curves made at several heating rates. The gradient
then gives the value of Ea and the intercept then gives A, if a function
for g(˛) assumed.

The Coats and Redfern method [4] was originally designed using
two equations, one for 1st order and one for n order. In Ref. [2]
the method used by Burnham is described as an extension of the
Coats and Redfern method. This is for results from multiheating rate
experiments. There is no mention of which order was used, but if
Eq. (28) in Ref. [27] was meant to be the one used, that appears to
be only for 1st order. Since the data for the experiments in vacuum
appear to fit closely to an Avrami–Erofeev (A2) and the experiments
in nitrogen are close to zero order, it is unlikely that this method
will produce meaningful results. This may be seen in Table 1 for
simulated data where Ea and ln(A) are not all that close to the values
from other calculations.

The method of Vyazovkin [23–26] is an isoconversional one. He
assumed that activation energy varies with ˛ and wrote it as E˛. His
1st method involving various heating rates is:

n∑
i=1

n∑
j /= i

I(E˛, T˛,i)ˇi

I(E˛, T˛,j)ˇj
= min (2)

where I is the temperature integral:

I (E˛, T˛) =
T∫̨
0

exp
(−E˛

RT

)
dT (3)

Values of ˛ were chosen and a set of data measured at vari-
ous heating rates was interpolated to find the values of T where
the conversion was ˛. For each ˛, Eq. (2) was applied. The term
min implies that the minimum of the function had to be found.
The value of Ea was adjusted to produce this minimum value.
This was then repeated to find Ea at each ˛. The value of the
integral in Eq. (3) had to be found from a series because the
expression is not integrable. It was found from Eap(x)/R where
p(x) = exp(−x)/x(x2 + 10x + 18)/(x3 + 12x2 + 36x + 24). This was taken
by Vyazovkin [23] from Senum and Yang [28]. There are later ver-
sions of Eq. (2) using arbitrary variation of temperature instead of
linear rise [24]. Vyazovkin has also used numerical integration to
find the temperature integral. We preferred to use Eq. (2) and to
use Chebyshev polynomials to find the I(Ea,Ta) values, being more
precise [1]. The value of A was found by directly applying the equa-
tion:

d˛

dT
= A

ˇ
exp

(−Ea

RT

)
f (˛) (4)

where ˇ is heating rate in K s−1
ln
(

d˛

dT

)
= ln

(
Af (˛)

ˇ

)
− Ea

RT
(5)
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There was no reference given, but it seems to appear in Ref. [29].
n page 129 of that paper Eq. (5) is given, together with other similar

ranspositions of Eqs. (4) and (5) is stated to be used with a single
xperiment. This is obviously wrong because a plot of the left-hand
ide of Eq. (5) against 1/T has the variable ˛ in the so-called constant
erm. For this reason we have ignored the ‘general method’.

. Comparison of results from the various methods

As will shown later, Ea decreased as ˛ increased for both sam-
les. Strictly speaking, these are the only results that should be
eported. However the original report [2] gave tables of single Ea

alues. These must be the means of the variable Ea values plus the
esults from methods that only produce single overall values. For
he sake of comparison we have taken mean values to make up sim-
lar tables for comparison only. Some methods required a choice of

echanism before the analysis commenced, but in some cases n
r n′ could be found by curve fitting in the calculations. Analysis
as carried out using all of the data available at all heating rates

nd Ea, ln(A) and m n or n′ evaluated. The same definitions of m, n
nd n′ were used as in Part 1. A reconstruction or simulation pro-
ram, using these parameters, was always used to visually check
ow the fitted result matched the original. Rogue points or faults in
he analysis method, distorting the fit, were also shown up by this

eans. This program was also used to evaluate DEV, the deviation of
he reconstructed ˛ values from the original data, for the methods
hat did not use DEV directly and therefore did not produce a value.
igs. 3 and 4 show how well the fitting matched. These figures are,
or clarity, for one heating rate only and the method used was the
LR one. The figures show a slightly poorer fit if a fixed mechanism

s assumed, but a closer fit if a variable n for Fig. 3 and n′ for Fig. 4
s used.

The Šesták–Berggren equation also shows an even better fit over
ome of the ˛ range. When this equation was used to analyse data
imulated for an (A2) mechanism, the fit over the middle range of ˛
as just as good as analysing using an (A2) mechanism. Discrepan-

ies when plotting the original data and the fitted data only showed
p at the extreme ends of the values of ˛. Some investigators in Ref.
2] tried to use 1st order as the mechanism for the decomposition
n nitrogen. Fig. 3 shows this not to be a viable equation to use and
ero order also to be not quite correct.

In Fig. 5, the result for the simulated data, most of the meth-
ds produce a horizontal line at Ea = 130.0 kJ/mol as expected. The
zawa method gives a curve that lies too high. Probably this is
ecause a very simple approximation for the value of p(x) is being
sed (Doyle [30]). However, it has also been pointed out that the
zawa method assumes that Ea is constant with respect to ˛ [31,32],

o that may be the reason for the discrepancy. The results pro-
uced by the Coats and Akahira methods appear as coincident and

ie too low. The Li and Tang method also lies too low and shows a
ery strange result at low ˛. Several methods show minor fluctu-
tions, but an expanded scale was used in this figure, so this may
e unimportant. Several methods show wider fluctuations when ˛
ears 1. These are the methods dependent upon differentiation of
he data (NPK differential and Friedman), which shows that minor
uctuations in the data are amplified and exaggerated by the pro-
ess of differentiation. In fact the simulated data for equation (A2),
nalysed in Fig. 5 contained 500 data points. The data for the two
xperimental results, supplied by ICTAC, contained only 100 points.
he simulation of (A2) was repeated using only 100 points. This
ade little difference to most of the methods, but Fig. 6 shows the
esult for the NPK differential method alone for the two numbers
f data points. The fluctuations are much more marked with only
00 points and this shows a general principle of interpolation and
ifferentiation – the abscissa values must not be widely spaced or
he effective fitted curves tend to dip between the experimental
imica Acta 494 (2009) 15–25

points producing erroneous readings. This is a good reason to avoid
differential methods altogether. Sbirrazzuoli et al. [33] have pro-
duced a study using various calculation methods and testing the
effect of varying numbers of data points. In fact 100 points was
the lowest number that they tried. Varying the number of points
had a marked effect upon the % error in Ea, the conclusion seems
to be that 600–800 points are required for a reasonable result, so
the data for the ICTAC project was deficient. Sbirrazzuoli and co-
workers [34,35] also tested the effect of adding noise to simulated
data. He presented results for the NLR method of calculation (the
only one comparable with those used for the ICTAC report) with
noise added to the simulated data (n = 2) with a standard devia-
tion of 0.2. The resulting errors in the kinetic triplet were n: −3%;
ln(A): −2%; Ea: −1.6%, which are quite considerable. If what is seen
in Figs. 1 and 2 is regarded as noise, then the results obtained from
that data must be considered also in error. Sbirrazzuoli [36] also
tested the Friedman and Vyazovkin methods and decided that the
Vyazovkin is the better.

The results for the simulated data from the ICTAC study are
shown in Fig. 7 and may be compared with Fig. 3 in Ref. [3].
Vyazovkin plotted isothermal results in this figure as well as non-
isothermal results. If only his non-isothermal results are used, the
results are much the same as ours. Many of the methods coincide.
However, the Ozawa results are slightly high. The Li and Tang curve
crosses the other results, then lies too low. Roduit’s Flynn and Wall
result is slightly too low. The differential method results are much
too high and show fluctuations.

Results for variation of Ea were produced by some of the meth-
ods (those listed in the tables as producing a mean result). For the
two calcite samples this is shown in Figs. 8 and 9. The scale for Ea

for these results spans about 50 kJ/mole whereas Figs. 5 and 6 cover
only 2 kJ/mol. Thus minor fluctuations tend to be suppressed in Figs
8 and 9. Since the Ea values for both samples show a wide variation
with ˛, there is probably no point in reporting single Ea values as a
mean value, taken from the data in Figs. 8 and 9, or from the meth-
ods that yield only a single value. However the ICTAC report is based
upon single values, so we have put these in our Tables 2 and 3 in
order to show the consistency that should have been possible by the
original researchers. In Figs. 8 and 9 several method approximately
coincide and overprint in the plots. Criado and co-workers [37] and
Starink [38] have pointed out that divergences in Ea values between
methods can be due to inaccuracy in the calculation of the integral
p(x). Criado and co-workers [37] showed that Coats and Redfern’s
approximation for p(x) could lead to Ea values that are as much as
4% low. However, we find that the Coats results appear to coincide
with most of the other results. The Akahira results only lie slightly
below the general result. The curves for the Ozawa method lie much
too high, but Starink [38] has shown that this method is very poor
in % error because of a very poor approximation for p(x). He also
produced results for a large number of equations as other approx-
imations for p(x). He also showed that the error in Ea determined
varies with the value of x. His Fig. 2 shows that the % error is not good
below x = 40 and becomes much larger as x decreases to 10. The val-
ues of x in the present experimental case range from 20.6–31.0 for
the nitrogen sample and 13.8–25.2 for the vacuum sample. The use
of Chebyshev polynomials produce a very low error down to at least
x = 5 [1]. The Li and Tang results are distinctly too low. This method
[8,9] uses differentiation of the original data, then takes functions
of the data and integrates it. This seems to smooth out the fluctu-
ations shown by other differential methods. However the result is
values that rise with ˛ while the other methods show falling val-

ues. The differential methods (NPK differential and Friedman) show
widely fluctuating results because there are too few data points as
explained above. This only shows the unsuitability of the data pro-
vided as shown in Figs. 1 and 2. The rest of the methods show close
agreement in the position of the Ea curves.
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Fig. 10. Kissinger data plot. To show how the curves fitted the peaks of the differ-

kinetic mechanism, then f′(˛) = 0 and again ˛m could be ignored.
Thus 1st order could be assumed to agree with Ref. [2].

The best that can be said is that the data presented is unsuitable
for this type of analysis, far more data points were required.
C.F. Dickinson, G.R. Heal / Ther

Tables 1–3 show the numerical results for the simulation and
he two samples. The mean results are, of course, the mean of the
urves in Figs. 5, 8 and 9, but may also be compared with those
ethods that produce a single overall result. In Table 1 the mean

esults agree with the line at Ea = 130 kJ/mol in Fig. 5 for most meth-
ds. The Ozawa lies too high and Coats, Akahira and Li and Tang
esults are too low. Considering the methods yielding only a single
verall result, these mostly provide close to the correct answer and
his includes the Kofstad method. The results from the method of
ngraham and Marrier are distinctly too low.

In the cases of calcite in nitrogen and vacuum, Figs. 8 and 9
how a decrease in activation energy with increasing ˛. In the case
n nitrogen the decrease is steep at low ˛, followed by an almost
onstant value during the rest of the decomposition. The calcite in
acuum shows a continuous decrease in Ea across the values of ˛.
he values of Ea quoted in Tables 2 and 3 are either the means of
he values seen in Figs. 8 and 9 or overall values found by various

athematical processes. There is no reason to suppose that these
alues should exactly agree when a decrease in individual values is
hown in the values of Ea with ˛. This may be seen in the tables.
n the tables, in the column labelled EXPONENT, if a mechanism
s named then that mechanism was assumed and applied to the

ethod, after trials with several mechanisms from Table 1 of Part 1.
f only a figure is given for n or n′ (or n and m for Šesták–Berggren)
hen that figure is a result derived from the method being applied.

Considering calcite in vacuum first, a reasonable conclusion
rom Table 3 is that the overall value of Ea is about 120 kJ/mol
nd ln(A) is around 10.0 to 11.0. The values, obtained as means, lie
lightly higher at around 123 to 124 kJ/mol, with ln(A) around 11.0
o 13.0. The Ozawa result again lies too high. The results from NPK
ifferential, Friedman, Li and Tang, Kofstad and Marrier are far too

ow and the differential methods fluctuate too greatly. Vyazovkin’s
ethod agrees well with other mean methods. In Ref. [2] some

esearchers have shown the variation in Ea by showing its value at
= 0.1 and 0.9. We obtain, for the overlapping plots of Fig. 9, approx-

mately 144 kJ/mol for Ea at ˛ = 0.1 and 110 kJ/mol for Ea at ˛ = 0.9.
birrazzuoli [36] has also shown that the Friedman method can
ave systematic errors when compared with other methods and
ecommends the Vyazovkin method [39].

In the case of the results in nitrogen, there is a difficulty in decid-
ng on the mechanism. Attempts to fit various kinetic equations
rom Table 1 in Part 1 show that the kinetics are close to zero order

ith a slight deviation to a higher order, especially at higher ˛ val-
es. On the other hand, attempts to fit 1st order kinetics fail. In Ref.
2] the use of zero and 1st order has been made. In Table 2 attempts
o use both of these orders have been made, together with frac-
ional orders. The apparent value for Ea is around 193–194 kJ/mol
nd 15.5–15.9 for ln(A) and an order of around 0.13. In the nitrogen
ase, because only a few of Ea values at the early ˛ values are high,
he mean values are much the same as overall values. The Ozawa
alues are too high and the NPK differential and Friedman results
re too low or fluctuating. However, the Friedman and NPK differ-
ntial results fluctuate rather evenly on either side of the results by
he other methods so the mean values are much the same. The Li
nd Tang results are too low as are those of Kofstad and Marrier,
ut the Vyazovkin method agrees well. This time the NPK integral
esults are very slightly high.

Sbirrazzuoli et al. [35] have analysed results using the Kissinger
ethod both with and without noise added to simulated data. With

oise of standard deviation of 0.2 added, the change in % error of
he kinetic triplet values was around an order of magnitude. The

issinger method depends upon finding the position of the peak in

he d˛/dT plot. The main problem is in fitting a curve to the differen-
iated experimental data. The problem is illustrated in Figs. 1 and 2.
or the nitrogen data, Fig. 10 shows all seven peaks with only the
egion around the peaks plotted. Fig. 11 shows a similar plot for
entiated data for calcite decomposed under nitrogen. Only the 15 points above and
below the highest points have been fitted. Continuous line – experimental data. Dot-
ted line – peak fitted to the line. Vertical dashed line – position of the peak used in
the method.

6 peaks for the vacuum data. There is an obvious difficulty in fit-
ting a curve to this data. This includes deciding how many points
above and below the peak region to include in the fitted equation
and which equation to use. Trial and error showed that the curves
fitted the peaks best for about 20 points above and below for the
vacuum data and about 15 points for the nitrogen data, with a cubic
equation fitted for the vacuum data and a quadratic equation for the
nitrogen data.

Results from the other methods indicated that the nearest mech-
anism for the vacuum data was (A2), so this was applied in the
analysis after the peaks had been located.

For the nitrogen data there is more doubt. The mechanism
appeared to be near to zero order, but with a slight curve at the
top end, producing a peak in d˛/dT very close to the end of the
data, shown in Fig. 1. This meant that for the higher heating rates
there were fewer points available to be fitted to the equation on the
upper side. If the mechanism was truly zero order there would be
no peak at all, but it is not of the correct shape for 1st order. A way
to deal with this would be to assume 1st order, then at least the
values of ˛m would be of no importance. If zero order was the true
Fig. 11. Kissinger data plot to show the curves fitted the peaks of the differentiated
data for calcite decomposed under vacuum. Only the 20 points above and below the
highest points have been fitted. Continuous line – experimental data. Dotted line –
peak fitted to the line. Vertical dashed line – position of the peak used in the method.
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would become impossible to decide between four or five possible
mechanisms.

The numerical differentiation used did not work correctly at high
values of ˛, because the steps of ˛ were very small. Instead, use
was made of the relationship: d˛/dT = (1 − ˛) d(−ln (1 − ˛))/dt. Thus
2 C.F. Dickinson, G.R. Heal / Ther

Considering all of the methods overall, the Ingraham and Mar-
ier, Kofstad and Ozawa methods are too far out to be considered as
alid. The Li and Tang, and Akahira and Sunose, methods produce
esults that are rather too low.

The Kissinger method depends too much on identifying the posi-
ion of the peaks in d˛/dT, which is difficult if there are fluctuations,
s in the vacuum results, so the method is not to be trusted. The dif-
erential NPK method also is badly affected by fluctuating data. In
his study this is truer for the vacuum data than for the nitrogen
ata. The method can only be trusted if the data curves are rela-
ively smooth. The rest of the methods have been shown to produce
esults that agree reasonably and have established sets of consensus
esults.

It should not be assumed that the results in the tables are neces-
arily the ‘correct’ answer or even fixed by the method. The methods
ften have choices to be made in the procedure, which affects the
esult. For instance the differential methods are not very precise at
he ends of the range of ˛, because there are only data points on one
ide of the analysis position, so d˛/dT is in error in these regions.
his may be seen in Figs. 8 and 9. To find meaningful mean values
or the tables, these end points were examined visually on the plots
nd removed. The NPK method has many choices in calculation:

. Which equation to choose for interpolation and differentiation
along each experimental curve – e.g. quadratic, cubic, other poly-
nomial? We found the quadratic equation to be the most suitable.

. What size to choose for the submatrices [13]? (Size of tempera-
ture steps across the submatrix and the number of these steps.
Also number of ˛ steps down the submatrix). This varied between
samples for us.

. How much to overlap the submatrices? Sempere and co-workers
[11,12] used a single line overlap; we used a large overlap, leaving
only one line not overlapped [13].

. What equation to choose for interpolation across a matrix ie
across the experimental curves. – e.g. linear or quadratic. We used
a linear equation.

. How is the value of the intercept to be corrected to obtain
ln(A) − Correction Method 1 or 2 [13]. We used method 1 here.

. Should the data be differentiated and fitted to a differential the-
ory or should the original integral data be fitted to integrated
theory equations? We favour the latter for smoother resulting
plots.

These factors had to be determined by trial and error to produce
eaningful Ea plots and agreement between methods.

Each of these variations produces slightly different results from
he same data, so this must be allowed for in comparisons with
ther workers’ results.

. Comments on the Freeman and Carroll method

The original method [19] was only applied to the order type
quations i.e. da/dt = A/ˇe−Ea/RT (1 − a)n. The plot was made of

� ln (d˛/dt)
� ln (1 − ˛)

against
�(1/T)

� ln (1 − ˛)
(6)

The intercept gave the value of n, Ea was calculated from
gradient x R. Once n was known the equation:

(
d˛

) (
A
)

Ea
n
dt

− n ln (1 − ˛) = ln
ˇ

−
RT

(7)

as applied and the intercept gave A/ˇ and hence the value of A.
The method was extended by Heide et al. [20,21] and by Boy

nd Böhme [22] to other kinetic equations, for instance, to test an
imica Acta 494 (2009) 15–25

Avrami–Erofeev equation, data was plotted as:

� ln
(

d˛/dT
)

− � ln (1 − ˛)

� ln [− ln (1 − ˛)]
versus

�(1/T)
� ln [− ln (1 − ˛)]

(8)

The intercept was then the value of p in the original
Avrami–Erofeev equation (p = (n′ − 1)/n′ from the definition in Part
1). Simulated data was produced for a zero order and (A2). When
the data was analysed by the correct type of plot for that data, the
expected values of Ea, A were obtained and the intercept corre-
sponded to either n, n′ for the Avrami–Erofeev equations. Similar
testing was carried out for the rest of the possible kinetic mod-
els. However, there was a great deal of ambiguity. If the kinetics
being obeyed are unknown, it is necessary to make all of the plots
and to choose which is the best fit. Even with perfect simulated
data several plots appeared, by eye, to fit perfectly. Looking at
the numerical statistics of the fitting it was very often not possi-
ble to decide between several equations. For instance, simulated
data generated for an Avrami–Erofeev Eq. (14) (A2) equally fit-
ted the Avrami–Erofeev plot and an Order plot and Eqs. (5), (11)
and (12). Although very close to perfect lines, these plots gave
incorrect, widely varying values of Ea, A and intercept. Thus the
method cannot unambiguously determine the kinetic equation and
the kinetic constants. Vyazovkin [40] has commented on the dif-
ficulty in discriminating in selecting between models in general.
Criticisms of the Freeman–Carroll method have appeared before
[41–43], generally because of lack of discrimination between mech-
anisms and sensitivity to noise. If the kinetic mechanism is known
from other sources, eg one of the other methods, then Ea and A could
be found correctly. Simulated data for the (A2) mechanism and
one heating rate, 1 K/s, was produced assuming an Avrami–Erofeev
mechanism. The resulting plot is shown in Fig. 12. A perfect line
is shown and the gradient gives an Ea of 130 kJ/mol and an ln(A)
of 29.9336 and a p exponent of 0.5 (n′ = 2), which were exactly
the starting values for the simulation. It should be noted that a
scale was chosen to spread the points across the plot, but this
involved large offsets for the starting values of abscissa and ordi-
nate. This means that a long extrapolation has to be used to get
the intercept. In the case of real, experimental data, with even
minor fluctuations due to experimental noise or variation in the
sample due to impurities, grain size or temperature gradients, it
Fig. 12. Freeman and Carroll plot for simulated data for an Avrami–Erofeev
(A2) equation. Plot axes are for general Avrami–Erofeev equations. Abscissa:
�(1/T)/�(ln(−ln(1 − ˛))). Ordinate: �(ln(d˛/dT − d(ln(1 − ˛)))/�(ln(−ln(1 − ˛)).
(+) points; (- - -) best fitted line.
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ig. 13. Freeman and Carroll plot for data for calcite decomposed in nitrogen.
lot axes are for general order equations. Abscissa: �(1/T)/�(ln(1 − ˛)). Ordinate:
(ln(d˛/dT)). (+) Experimental points; (- - -) best fitted line.

n (1 − ˛) was actually differentiated, which has large numerical
ntervals and Fig. 12 is almost a perfect straight line.

The method involves a double differentiation, and if there are
uctuations in the data, as mentioned above, this produces extreme
uctuations in the final plot. The plot for the decomposition in
itrogen is shown in Fig. 13 and the plot for vacuum in Fig. 14
the lowest heating rates only in both cases). The nitrogen result
hows a great deal of fluctuation. The value of the intercept is very
ensitive to changes in the slope of the plot and cannot be reliably
etermined from this. The vacuum conditions cause even more fluc-
uation, including doubling back of the plot, so no reliance at all may
e placed on the results. This is because the abscissa contains ˛
hich does not increase regularly with temperature. Sbirrazzuoli

34] mention the errors introduced by noise added to data in a
reeman–Carroll analysis, but the errors in the present case must
e enormous by comparison with his.

Reference [2] quotes the original theory of the method only
nd not the development of the other plots made by Heide et al.
20–22]. It is not mentioned which type of plot was made, so it

ust be assumed that only the one type of plot was made. There

s no mention of the value of the intercept n or p in the results in
aper [2]. However the plot could be correct for the nitrogen data
ecause the kinetics appear, from the other methods, to be near
ero order or at least a low value of n. The results under vacuum
eem to follow an Avrami–Erofeev mechanism with a p value of

ig. 14. Freeman and Carroll plot for data for calcite decomposed under vacuum. Plot
xes are for general Avrami–Erofeev equations. Abscissa: �(1/T)/�(ln(−ln(1 − ˛))).
rdinate: �(ln(d˛/dT − d(ln(1 − ˛)))/�(ln(−ln(1 − ˛))). (+) Experimental points. (-
-) best fitted line.
Fig. 15. Reconstruction of the experimental data under vacuum by simulation by
two simultaneous kinetic equations using Roduit’s parameters from Table 5 in Ref.
[29].

about 0.5. Thus plotting the data as an order type equation would
be incorrect. It has already been pointed out that these types of
plot in a Freeman and Carroll analysis equally well fit data from
either mechanism. The results obtained for the two sets of data
analysed here were:

In N2 Ea = 156.126 kJ/mol ln(A) = 28.2533 n = 2.0322
In vacuum Ea = 55.642 kJ/mol ln(A) = 6.9350 p = 0.5189

However, this must be counted as completely unreliable because
of the nature of the plot in Fig. 13 and an even worse one for the
vacuum data in Fig. 14. For these reasons the results were not put
into Tables 1 and 2 because they are not

5. Comparison with the results in Ref. [2]

5.1. Calcite in vacuum results in Table 1 of Ref. [2]

There is a great deal of scatter in the results, some being dou-
ble the values that we obtained. Where researchers have split their
results between high and low ˛, then many of their results compare
reasonably well with our values at ˛ = 0.1 and 0.9. The experimental
data, when plotted, fits a sigmoid shape, which cannot be pro-
duced by a simple order mechanism or any acceleratory process.
The results seen could be produced by overlapping acceleratory and
order mechanisms, but in fact fit quite well to an Avrami–Erofeev
mechanism type (A2). Results in the ICTAC report using order mech-
anisms produce particularly poor results. Unexpectedly Anderson
does produce a reasonable answer for order 0.5 fitted overall. The
results of Burnham using a 1st order expression are poor. Desseyn’s
results are all too high or too low, his Ozawa calculation giving high
results due to inaccurate values of p(x). Nomen and Sempere’s NPK
differential method results are very close to ours, but our NPK inte-
gral results are likely to be more reliable and are closer to those of
our other methods. Opfermann’s results also are too high or too low
and his values of n for the Avrami–Erofeev equation do not seem to
be quite correct. Li and Tang’s results are too low or too high and
they seem to have ignored variation of Ea with ˛.

Roduit has also suggested, in a follow-up paper, Ref. [44], that
the experimental curves may be better represented by two paral-
lel reactions with different sets of parameters: Ea1, A1, n1 and Ea2,
A2, n2. The ˛ values are added together with different weightings,

w1 and w2. These values are listed in his Table 5. We have used
his parameters to simulate the resulting curves and compare them
with the experimental data in Fig. 15. The curves are a poor fit,
lying too high along the temperature scale and with a kink near to
the end. If the parameters are used to form plots of the separate
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ig. 16. Reconstruction of the experimental data under vacuum by simulation of the
inetic equation using our parameters for the NLR or NPK method from our Table 3.

eactions, the curves lie far too far to the right of the experimental
urves. If the data from the two equations are to be added to fit the
xperimental result, then they must be much closer to the experi-
ental curves. Probably one needs to be to the right and one to the

eft of the experimental result. To further investigate this model
e changed the NLR (simplex) program to use the seven parame-

ers described above (w2 = 1 − w1) for two parallel reactions. Roduit
44] mentions that there is a danger of ‘overfitting’ the experimen-
al data by introducing too many adjustable parameters. In this case
he optimisation is trying to find a good minimum or ‘valley’ in

ultidimensional space. With seven variables there are likely to be
any false ‘valleys’ for the optimisation to fall down. This may be
hat has happened with Roduit’s parameters. It is said that two

o three, perhaps four, is the maximum number of parameters that
hould be employed in this type of optimisation. In our case, using
everal starting points for the seven parameters produced different
nal points, which confirms the existence of false minima. It was
lso noticed that, whatever the starting point, one set of parameters
ettled with values very near to the values for a single mechanism
or the n′-dimensional Avrami–Erofeev equation, as listed in our
able 3. The weighting w1 for this was very near to unity, i.e. the
eaction appeared to be almost entirely a simple single step. The
econd reaction had a w2 value that was very close to zero (typically
.000001). The values of Ea2, A2 and n2 were meaningless because
his reaction is contributing nothing to the overall results. Whatever
he starting point, the optimisation seemed to reject the hypothesis
f two reactions and confirmed a simple single reaction. It would
robably be better to consider the reaction as approximating to an
vrami–Erofeev equation (A2) but with deviations at several places
ue to extraneous factors such as inhomogeneity of the sample or
eat flow variations. Thus the main reaction step is accounted for
ith a single set of parameters, and minor fluctuations are ignored.

Considering all of the results in Table 3, the best fitting param-
ters, produced by us, was for the NLR and NPK (integral) (Šesták
nd Berggren equation), the direct grid search being close as well.
he resulting reconstruction is shown in Fig. 16, which is far better
han Fig. 15.

If compared with our results, Desseyn’s results are the worst and
oduit’s are the best.

.2. Calcite in nitrogen results in Table 2 of Ref.[2]
The spread of results in this case is much less and many results
gree with ours. The Ozawa method results of Desseyn are again too
igh due to inaccurate values for p(x) and the Flynn and Wall results
re to be preferred. Where values are shown separately for low and
imica Acta 494 (2009) 15–25

high ˛, the results again bear out the change with ˛ shown in Fig. 8.
However, the variation of Ea with ˛, found in Ref. [2], was generally
greater than in our case, and Roduit found an increase with ˛ instead
of a decrease when he used the Friedman and Flynn, Wall and Ozawa
methods. Roduit’s results for the Multivariate-NLR method follow
those for the isothermal case. In Table 2 in Ref. [2] and the follow-up
paper [44], he describes using both Fn and Rn mechanisms. These
again produce identical Ea values, slightly different ln(A) values but
a value of n very different from the nR value. The values from the
two mechanisms are connected by the Eq. (13) of Part 1, as are our
results in Table 2.

Li and Tang again ignored the variation in Ea, although two of
their results were close. Desseyn’s results were again the worst,
with Anderson, Burnham and Roduit producing the most consistent
results.

5.3. Connection between Fn and Rn equations

This connection was explained in Part 1, Section 1.2. The
same connection applies in non-isothermal experiments. In this
case, Roduit’s Table 4 shows: n + (1/nR) + 0.177 + 1/1.215 = 1.00005
(should be 1.0) and 15.67 + ln(1.215) = 15.86 (should be 15.86).

Our Table 2 shows: n + (1/nR) = 0.1311 + 1/1.151 = 0.99991 (should
be 1.0) and 15.699 + ln(1.151) = 15.840 (should be 15.838) which are
approximately the correct values to prove the connection.

5.4. Freeman and Carroll method

The results of Ea in Ref [2] produced by Desseyn for both decom-
position in nitrogen and vacuum are nowhere near the apparently
correct results by other methods shown in our Tables 2 and 3 and
by other researchers in Ref [2]. The results for ln(A) are shown as
negative, which is impossibly low, so the analysis must have been
incorrect.

6. Other methods

The methods of Stander and van Vuuren [45] and also Loglog
plots of Hancock and Sharp [46] were applied to this data. Although
the methods worked well enough for perfect, simulated data, they
did not work at all well for these experimental data. The plots were
not good enough to pick out which kinetic equation was being
obeyed. The results were not worth reporting and have been left
out.

7. Recommendations

Many of the following points have been made previously by
other researchers, but are reiterated here for emphasis.

1. Avoid the use differential methods when the experimental curve
is fluctuating. If a differential method must be used, do not use a
number of data points as low as 100. At least 500 points would
be best.

2. Do not use the double differential Freeman and Carroll method.
3. Determine the mechanism followed, or the nearest one, if possi-

ble.
4. Use methods that allow the determination of variable values of

n or n′.
5. Use a reconstruction program to see how good the final fit is.

6. Do not use the Ozawa, Li and Tang, Coats and Redfern, Akahira,

Kofstad or Ingraham and Marrier methods, these being too
imprecise.

7. The best methods seem to be NLR, NPK (integral), both with vari-
able parameters n or n′ (or m and n for Šesták–Berggren), and
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Flynn and Wall.The Kissinger method could be used, provided
the position of the peaks in d˛/dt can be determined accurately.

. If p(x) is required, use the Chebyshev polynomial method of cal-
culation [1]

. Report the variation of Ea against ˛.
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