Contents lists available at ScienceDirect

Thermochimica Acta

journal homepage: www.elsevier.com/locate/tca

Excess molar volumes and excess isentropic compressibilities of 2-pyrrolidinone at 308.15 K

Jaibir S. Yadav, Dimple, V.K. Sharma*

Department of Chemistry, Maharshi Dayanand University, Rohtak 124001, India

ARTICLE INFO

ABSTRACT

Article history: Received 15 April 2009 Received in revised form 6 July 2009 Accepted 30 July 2009 Available online 8 August 2009

Keywords: Molar excess volumes, $V^{\rm E}_{ijk}$ Speeds of sound, u_{ijk} Excess isentropic compressibilities, $(\kappa^{\rm E}_{\rm S})_{ijk}$ Connectivity parameter of third degree, ${}^3\xi$ Molar excess volumes V_{ijk}^{E} and speeds of sound, u_{ijk} of 2-pyrrolidinone (i) + benzene (j) + toluene or oor p-xylene (k) ternary mixtures have been measured as a function of composition at 308.15 K. The observed speeds of sound data have been utilized to calculate their excess isentropic compressibilities. The observed data have been fitted to Redlich–Kister equation to calculate ternary adjustable parameters and standard deviations. Molar excess volumes, V_{ijk}^{E} and excess isentropic compressibilities, $(\kappa_{S}^{E})_{ijk}$ data for the investigated mixtures have been analyzed in terms of Graph theory and Flory theory. It has been observed that V_{ijk}^{E} and $(\kappa_{S}^{E})_{ijk}$ values calculated by Graph theory compare well with their corresponding experimental values.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A ternary (i+j+k) mixture is assumed to consist of its (i+j), (j+k) and (i+k) sub-binary mixtures. Thermodynamic properties of ternary mixtures can thus be calculated by employing thermodynamic properties of their sub-binary mixtures. Topological investigations [1] of 2-pyrrolidinone + benzene or toluene or o- or p-xylene binary mixtures and ab initio calculation [2] on the different associated structures of 2-pyrrolidinone with water reveal that 2-pyrrolidinone mainly exist as a mixture of open and cyclic dimer. Further, Graph theory (which involves the topology of the constituents of mixtures) describes well the molar excess volumes, molar excess enthalpies and excess isentropic compressibilities of 2-pyrrolidinone (i)+aromatic hydrocarbons (j) binary mixtures. It would, therefore, be of interest to see how well Graph theory calculate the molar excess volumes and excess isentropic compressibilities of ternary mixtures when a third component like toluene or o- or p-xylene (k) is added to 2-pyrrolidinone (i) + benzene (j) binary mixtures. These considerations prompted us to measure molar excess volumes and speeds of sound of 2-pyrrolidinone (i)+benzene (j)+toluene or o- or p-xylene (k) ternary mixtures.

* Corresponding author. Tel.: +91 1262295012.

E-mail address: v_sharmachem58@rediffmail.com (V.K. Sharma).

2. Experimental

2.1. Materials

2-Pyrrolidinone (**2-Py**) (Fluka), benzene, toluene, o- and p-xylene (AR Grade) were purified by standard methods [3].

2.2. Methods

The purities of the purified liquids were checked by measuring their densities with a bicapillary pycknometer (with an accuracy of two parts in 10^5) at 298.15 ± 0.01 K and the resulting densities (reported in Table 1) agreed to within ± 0.05 kg m⁻³ of their corresponding literature values [3,4].

Molar excess volumes, V_{ijk}^{E} for ternary mixture were measured in a dilatometer in the manner described elsewhere [5]. The dilatometer had three limbs for three components. The change in liquid level of dialatometer capillary was measured with a cathetometer that could read to ± 0.001 cm. The uncertainty in the measured V_{ijk}^{E} values is ± 0.5 percent.

The speed of sound at frequency 2 MHz was determined using a quartz crystal interferometer (Model-M 84, Mittal Enterprises, New Delhi, India). The speeds of sound values for the purified liquids at 298.15 ± 0.01 K (recorded in Table 1) compare well with their corresponding literature values [6–10]. The uncertainty in measured speeds of sound measurement is ± 1 m/s.

^{0040-6031/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.tca.2009.07.017

Table 1

Comparison of densities, ρ ; speeds of sound, u; thermal expansion coefficients, α and molar heat capacities, C_p of pure liquids with their literature values at 298.15 K.

Liquid	ρ (kg m ⁻³)		$u ({ m ms}^{-1})$	$u ({ m ms}^{-1})$		C _p (Joule)
	Experimental	Literature	Experimental	Literature		
2-Pyrrolidinone	1107.3	1107.22 ⁴	1603 ^a	1603.1 ^{a6}	0.732	169.37
Benzene	873.62	873.60 ³	1298	1298.9 ⁷	1.252	135.76
Toluene	862.23	862.19 ³	1305	1304.0 ⁸	1.085	157.29
o-Xylene	875.91	875.94 ³	1344	1345.0 ⁹	0.995	188.07
p-Xylene	858.68	856.61 ³	1310	1309.6 ¹⁰	1.060	187.66

Table 2 (Continued)

^a Values at 308.15 K.

3. Results

Molar excess volumes, V_{ijk}^{E} and speeds of sound, u_{ijk} data of **2-Py** (i)+benzene (j)+toluene or o- or p-xylene (k) ternary mixtures over entire composition range at 308.15K are recorded in Tables 2 and 3, respectively. The isentropic compressibilities $(\kappa_S)_{ijk}$

Table 2

0.3384

0.5496

-0.519

-0.514

-1.274

LADIC 2 Comparison of measured, V_{ijk}^E values for the various (i + j + k) ternary mixtures evaluated from Graph and Flory theory with their corresponding experimental values; also included are the various parameters $V_{ijk}^{(n)}$ (n = 0-2) along with their standard deviation, ($\sigma(V_{ijk}^E)$), interaction parameters χ^* , χ'_{ij} , etc., and connectivity parameters of third degree, ${}^3\xi_i$ (i = i-k).

x _i	xi	$V_{iik}^{\rm E}$ (cm ³ mol ⁻¹)		
	5	Exptl	Graph	Flory
2-Pyrrolidinone	(i) + benzene (j)	+toluene (k)		
0.0648	0.8352	-0.121	-0.138	-0.430
0.0759	0.0464	-0.095	-0.052	-0.412
0.1027	0.7635	-0.206	-0.225	-0.638
0.1198	0.0401	-0.164	-0.141	-0.613
0.1261	0.4663	-0.159	-0.103	-0.834
0.1315	0.0527	-0.178	-0.147	-0.659
0.1393	0.1982	-0.145	-0.026	-0.683
0.1691	0.5517	-0.295	-0.260	-0.881
0.1837	0.6653	-0.415	-0.425	-0.996
0.2089	0.3642	-0.249	-0.236	-0.967
0.2334	0.4632	-0.381	-0.382	-1.079
0.2463	0.2684	-0.280	-0.292	-1.050
0.2515	0.0476	-0.370	-0.342	-1.024
0.2997	0.1359	-0.396	-0.385	-1.129
0.3073	0.6133	-0.685	-0.688	-1.349
0.3605	0.5646	-0.763	-0.743	-1.408
0.3974	0.5675	-0.716	-0.772	-1.451
0.4032	0.1068	-0.528	-0.522	-1.223
0.4120	0.5136	-0.812	-0.769	-1.426
0.4753	0.3729	-0.745	-0.740	-1.354
0.5146	0.4395	-0.778	-0.780	-1.383
0.5279	0.3387	-0.737	-0.740	-1.312
0.5342	0.3824	-0.799	-0.761	-1.334
0.5794	0.0698	-0.594	-0.615	-1.123
0.6148	0.3145	-0.709	-0.710	-1.205
0.6470	0.2895	-0.665	-0.682	-1.140
0.6897	0.2128	-0.556	-0.614	-1.015
0.7086	0.2179	-0.551	-0.599	-0.979
0.8429	0.0567	-0.316	-0.372	-0.546
0.8972	0.0620	-0.218	-0.253	-0.383
$V^{(0)} - 1.270$ V	(1) - 44757	$V^{(2)} = -333.435 \cdot \sigma(V^{E})$	- 0.004	
$(3\epsilon) = 1.270, 7$	$\frac{1}{3}$ $(k) = 0.666 \cdot (3)$	$v_{ijk} = 0.840$	- 0.001	
$(\zeta_1) = 1.001, ($	$(\zeta_{j}) = 0.000, (0.000, 0.000)$	$\zeta_{\rm K} = 0.040$, = 1.5/2: $v' = 1.753$		
$\chi = -1.725, \chi$	$\chi_{ij} = -0.045, \chi_{jk}$	$\chi = 1.342, \chi_{ik} = -1.755$		
$\chi_{ij} = -4.405, \gamma$	$\chi_{jk} = 5.569, \chi_{ik}$	= 1.140		
2-Pyrrolidinone	(i) + benzene (j)	+o-xylene (k)		
0.1175	0.7450	-0.112	-0.170	-0.630
0.1716	0.5099	-0.040	-0.088	-0.696
0.2141	0.5513	-0.195	-0.243	-0.902
0.2456	0.5095	-0.228	-0.275	-0.970
0.2723	0.1280	-0.091	-0.078	-0.764
0.2943	0.4875	-0.327	-0.358	-1.089
0 3225	0.5288	-0.464	_0.461	-1 209

Y	v	V^{E} (cm ³ mol ⁻¹)	
Xi	Xj	V _{ijk} (CIII' IIIOI) Creat	Florer
		Expti	Graph	Flory
0.3464	0.1667	-0.104	-0.159	-0.891
0.3751	0.4683	-0.494	-0.489	-1.238
0.4302	0.3636	-0.423	-0.447	-1.175
0.4421	0.4889	-0.620	-0.616	-1.362
0.4584	0.4307	-0.591	-0.568	-1.291
0.4891	0.1154	-0.241	-0.244	-0.919
0.5099	0.1169	-0.250	-0.255	-0.918
0.5394	0.3265	-0.530	-0.525	-1.175
0.5486	0.0928	-0.297	-0.253	-0.878
0.5702	0.1152	-0.288	-0.277	-0.891
0.6168	0.2570	-0.482	-0.486	-1.050
0.6540	0.1298	-0.333	-0.315	-0.841
0.6713	0.1137	-0.331	-0.297	-0.801
0.6966	0.1893	-0.414	-0.416	-0.878
0.7432	0.1824	-0.412	-0.417	-0.807
0.7739	0.1358	-0.349	-0.338	-0.690
0.7983	0.1292	-0.334	-0.327	-0.639
0.8246	0.0986	-0.291	-0.268	-0.545
0.8549	0.0872	-0.257	-0.241	-0.469
0.8865	0.0669	-0.210	-0.193	-0.372
$V_{\rm intr}^{(0)} = 5.52$	1; $V_{iii}^{(1)} = -54.23$	84; $V_{\text{intr}}^{(2)} = -74.059;$	$\sigma(V_{iii}^{\rm E}) = 0.003$	
$\binom{3}{6} = 1.00$	$(\frac{3}{5}) = 0.666$	$5 \cdot ({}^{3}\xi_{\rm h}) = 1.426$	' IJK'	
$\chi^* = -1.34$	6: $\chi' = -0.628$	$\chi'_{1} = 1.993; \chi'_{2} =$	-0.559	
$\chi^* = -4.40$	$15. x^* - 13.816$	$\chi^* = 7.857$		
$\chi_{ij} = -4.40$	$\lambda_{jk} = 15.010$	$x_{ik} = 7.057$		
2 Dumalidia		a (i) i m initiana (li)		
2-Pyrrollulr	10 Here(1) + Derizent	e(J) + p-xylene(k)	0.050	0 222
0.0489	0.8862	-0.049	-0.056	-0.323
0.0383	0.6036	-0.058	-0.067	-0.580
0.0947	0.0025	-0.110	-0.101	-0.459
0.1103	0.7712	-0.110	-0.127	-0.030
0.1352	0.4504	-0.107	-0.119	-0.728
0.1551	0.1511	-0.232	-0.219	-0.792
0.2141	0.5554	-0.208	-0.209	-0.890
0.2393	0.0214	-0.200	-0.200	-1.202
0.2715	0.1251	0.362	0.362	-0.373
0.3326	0.2945	-0.338	-0.360	-1.203
0.3849	0.5003	_0.347	_0.300	-1.203
0.3843	0.4008	0.383	0.323	1 3 1 7
0.4290	0.4000	0.475	0.70	-1.517
0.4587	0.3602	-0.475	-0.475	1 306
0.4032	0.2483	-0.403	-0.466	-1.500
0.5488	0.1675	-0.515	-0.515	-1 127
0.5941	0.2069	-0.483	-0.453	_1.127
0.6012	0.2005	_0.478	_0.433	_1.110
0.6519	0.1196	-0.495	-0.500	_0.972
0.7032	0.0876	-0.465	-0.487	-0.859
0.7685	0.1306	_0.371	_0.31.7	-0.759
0.8143	0.0495	-0.335	-0.363	-0.583
0.8471	0.0727	-0.278	-0.256	-0.517
0.8623	0.0518	-0.261	-0.263	-0.459
0.8878	0.0637	-0.212	-0.175	-0.398
0.8909	0.0475	-0.208	-0.201	-0.376
0.9432	0.0339	-0.113	-0.090	-0.209
$V^{(0)} - 1.46$	$1 \cdot V^{(1)} - 15.032$	$V^{(2)} - 110.257$	$(V^{\rm E}) = 0.003$	0.200
(3ϵ) 1.40	$1, v_{ijk} = 15.052$	$(3\xi) = 10.257, 0$	(* _{ijk}) = 0.005	
$(\varsigma_i) = 1.00$	$(s_j) = 0.060$	$(\zeta_k) = 1.250$	1 720	
$\chi = -0.45$	$\chi_{ij} = -0.063$	$\chi_{ik} = 1.100, \chi_{ik} =$	-1.725	
$\chi_{ij}^{*} = -4.40$	$\chi_{jk} = 8.941;$	$\chi_{ik} = 0.800$		

 $V_{ijk}^{(n)}$ (n=0-2) and ($\sigma(V_{ijk}^{E})$) are in cm³ mol⁻¹; χ^* and χ'_{ij} , etc., are in cm³ mol⁻¹; χ^*_{ij} , etc., are in J mol⁻¹.

Table 3

Speeds of sound, u_{ijk} , is entropic compressibilities $(\kappa_S)_{ijk}$, excess is entropic compressibilities $(\kappa_{S}^{E})_{iik}$ for the various (i + j + k) ternary mixtures as a function of composition, x_i , mole fraction of component (i) at 308.15 K with $(\kappa_{\rm S}^{\rm E})_{ijk}$ values evaluated from Graph theory and Flory theory; also included are various parameters $(\kappa_{S}^{(n)})_{iik}$ (n = 0-2)along with their standard deviation, $\sigma(\kappa_{S}^{E})_{ijk}$, the interaction parameters χ'_{ij} , χ^{*}_{ij} , etc., and $({}^{3}\xi_{i})$ (i = i-k).

xi	xi	$u_{iik} (m s^{-1})$	$(\kappa_{\rm S})_{\rm iik}$ (Tpa ⁻¹)	$(\kappa_{\rm s}^{\rm E})_{\rm int}$ (T	pa ⁻¹)	
	,			Exptl.	Graph	Flory
2 Durrali	dinona (i)	honzona(i) i t	aluana (le)	•		
0.0594	0.8759	1271	707 6	_47	_44	-39.8
0.0975	0.8264	1272	698.9	-9.6	-8.6	-43.3
0.0373	0.6545	1272	694.8	_3.9	-6.0	-35.4
0.1307	0 5812	1273	690.8	-2.8	-5.5	-30.1
0 1657	0 2765	1290	675.2	-10.6	-59	-11.2
0 1894	0 2998	1286	675.7	-11.8	-9.8	-59.5
0 1905	0.6631	1302	652.3	-18.5	-183	-49.3
0.2193	0.3151	1290	665.6	-12.6	-14.8	-12.2
0.2615	0.4351	1311	636.1	-15.0	-23.5	-41.7
0.2756	0.2415	1300	647.2	-22.5	-22.4	-15.0
0.3074	0.2256	1330	614.4	-25.8	-26.0	-21.4
0.3159	0.5548	1310	624.2	-35.2	-34.9	-63.8
0.3261	0.5835	1352	583.8	-39.1	-35.5	-66.8
0.3493	0.2014	1315	621.9	-30.8	-31.3	-29.2
0.3596	0.5162	1359	573.5	-39.2	-39.1	-69.1
0.4152	0.1763	1330	598.5	-35.4	-37.5	-43.9
0.4532	0.5121	1398	528.3	-47.6	-47.9	-84.0
0.5153	0.1232	1355	562.1	-41.7	-42.5	-64.2
0.5844	0.0961	1376	535.9	-42.9	-42.6	-79.9
0.6276	0.0758	1391	519.3	-41.6	-41.9	-89.6
0.6608	0.1514	1446	474.6	-31.6	-48.3	-106.7
0.7065	0.542	1421	487.6	-36.4	-38.5	-109.3
0.7324	0.0417	1480	446.6	-35.0	-35.5	-115.3
0.7619	0.0498	1447	463.9	-30.7	-35.7	-124.3
0.7995	0.0728	1505	423.2	-25.6	-35.9	-136.3
0.8537	0.0515	1497	421.9	-20.6	-29.2	-149.3
$(\kappa_{c}^{(0)})_{} =$	465.6; (κ	$\binom{(1)}{c}$ = -1258	$3.3; (\kappa_c^{(2)})_{m} = -20$	0508.1; σ(κ_{c}^{E}) = 0.	1 TPa ⁻¹
$\chi^* = -37$	7.6: $\chi'_{} = -$	-233.4 : $\chi'_{} = 0$	$60.6: \chi'_{} = -91.9$	9	S 'IJK	
λ	ι, ν _i	Leef , M _{Jk}	, X _{ik}			
2-Pyrroli	dinone (i) -	+ benzene (j) + o	-xylene (k)			
0.0545	.8579	1274	704.9	-3.9	-2.3	-38.4
0.0917	0.7053	1288	683.8	-3.8	-3.7	-34.1
0.1542	0.3947	1315	648.0	-4.3	-6.4	-55.9
0.1572	0.6742	1305	654.8	-11.3	-9.4	-43.6
0.1669	0.5311	1307	653.1	-8.6	-8.9	-29.9
0.1823	0.5562	1316	641.1	-10.7	-10.8	-36.6
0.2195	0.4534	1318	634.8	-13.3	-13.4	-31.6
0.2456	0.6272	1325	621.7	-18.4	-18.5	-55.6
0.2861	0.2842	1338	608.4	-16.6	-16.9	-22.2
0.3252	0.5048	1348	589.3	-21.6	-26.2	-61.0
0.3586	.3054	1347	589.3	-24.8	-24.5	-44.8
0.3818	0.2522	1381	558.6	-24.4	-24.5	-42.8
0.4219	0.2137	1364	567.6	-25.5	-25.8	-47.7
0.4649	0.1796	1375	553.9	-26.1	-26.5	-54.2
0.4872	0.1153	1406	526.9	-20.9	-21.6	-50.0
0.5032	0.1427	1415	518.3	-25.5	-25.4	-59.1
0.5373	0.1578	1392	530.9	-29.2	-29.0	-71.0
0.5764	0.1526	1402	518.1	-30.6	-30.7	-81.0
0.6058	0.1294	1411	508.1	-29.7	-29.1	-78.5
0.6356	0.0432	1454	475.7	-23.3	-14.6	-82.3
0.6947	0.1081	1439	477.2	-29.4	-29.1	-108.3
0.7513	0.0904	1461	456.2	-27.3	-27.2	-122.1
0.7778	0.1215	1513	420.9	-27.7	-34.9	-132.1
0.8031	0.0727	1483	436.4	-23.9	-24.1	-135.0
0.8207	0.0438	1526	410.9	-21.0	-16.5	-137.4
0.8612	0.0500	1512	413.4	-18.2	-18.5	-149.5

-14.8

-17.9

-160.6

2-Pyrrolidinone (i) + benzene (j) + p-xylene (k)

1535

0.9010

0.0472

2 1 9 11 0 11	annone (1)	Denzene	(j) p nyiene (n)			
0.0588	0.6391	1281	702.2	-8.9	-7.0	-17.4
0.0726	0.6394	1276	705.6	-16.2	-16.4	-20.7
0.0972	0.5615	1300	676.6	-23.2	-23.0	-15.2
0.1287	0.6145	1285	685.8	-44.4	-44.9	-31.0
0.1712	0.5655	1293	670.8	-65.5	-61.1	-33.7
0.1849	0.7168	1372	590.0	-81.4	-81.6	-50.8

x _i	x_j	$u_{ijk} (m s^{-1})$	$(\kappa_{\rm S})_{\rm ijk}$ (Tpa ⁻¹)	$(\kappa_{\rm S}^{\rm E})_{\rm ijk}$ (Tpa ⁻¹)		
				Exptl.	Graph	Flory
0.2198	0.4865	1302	655.6	-72.3	-70.2	-34.2
0.2573	0.0423	1322	638.0	-21.2	-49.9	-41.2
0.2976	0.4119	1315	630.6	-80.2	-82.1	-42.7
0.3455	0.5746	1527	458.3	-158.2	-105.7	-69.0
0.3653	0.3691	1329	607.5	-87.9	-87.7	-53.6
0.3942	0.5493	1538	445.8	-152.8	-106.4	-75.7
0.4273	0.3299	1343	586.2	-88.9	-87.8	-63.9
0.4834	0.2916	1356	567.3	-83.1	-84.3	-73.1
0.5376	0.2603	1370	547.7	-79.2	-79.0	-83.1
0.5686	0.2414	1379	536.6	-75.2	-75.1	-88.8
0.5974	0.2243	1388	526.0	-71.2	-71.0	-94.3
0.6016	0.3845	1505	441.2	-78.3	-78.9	-105.6
0.6471	0.1839	1479	457.5	-57.0	-62.6	-102.9
0.6709	0.3187	1511	430.2	-62.1	-63.5	-117.0
0.7218	0.1477	1432	478.6	-50.1	-49.7	-119.1
0.7524	0.1270	1445	466.5	-44.3	-44.2	-125.5
0.7781	0.1098	1517	420.6	-39.9	-39.7	-130.9
0.8044	0.0915	1469	445.6	-35.1	-35.3	-136.6
0.8351	0.0691	1484	433.0	-30.1	-30.7	-143.4
0.8725	0.0494	1506	416.4	-24.8	-24.5	-152.5
0.9112	0.341	1564	381.8	-18.2	-17.3	-162.6
$(\kappa^{(0)}) =$	556 1.	$(\kappa^{(1)}) = -22$	$347.5:(\kappa^{(2)})$ –	_116300.	$(\kappa^{\rm E}) = 0$	2 TPa-1

 $\frac{\chi^{*} = -317.7; \ \chi'_{ij} = 301.8; \ \chi'_{jk} = 191.1; \ \chi'_{ik} = -178.5}{(k_{S}^{(n)})_{ijk} \ (n = 0-2) \text{ and } \sigma(\kappa_{S}^{E})_{ijk} \text{ are in Tpa}^{-1}; \ \chi^{*}, \ \chi'_{ij}, \text{ etc., are in Tpa}^{-1}.$

for ternary mixtures were determined by Eq. (1):

$$\left(\kappa_{\rm S}\right)_{ijk} = \left(\pi_{ijk}u_{ijk}^2\right)^{-1} \tag{1}$$

The densities, ρ_{ijk} of ternary mixtures were calculated from their experimental molar excess volumes data using the relation:

$$V_{ijk}^{E} = \sum_{i=i}^{k} x_{i} M_{i} (\rho_{ijk})^{-1} - \sum_{i=i}^{k} x_{i} M_{i} (\rho_{i})^{-1}$$
(2)

where x_i , M_i and ρ_i are the mole fraction, molar mass and density, respectively, of component (i).

Excess isentropic compressibilities, $(\kappa_{S}^{E})_{ijk}$ for ternary mixtures were calculated using Eq. (3):

$$(\kappa_{\rm S}^{\rm E})_{ijk} = \kappa_{\rm S} - \kappa_{\rm S}^{id} \tag{3}$$

 $\kappa_{\rm S}^{\rm id}$ for binary and ternary mixtures were obtained according to Benson and Kiyohara [11]:

$$\kappa_{\rm S}^{\rm id} = \sum_{i}^{k} \phi_{i} \left[\kappa_{{\rm S},i} + \frac{T V_{i} \alpha_{i}^{2}}{C_{{\rm p},i}} \right] - T \left(\sum_{i}^{k} x_{i} V_{i} \right) \frac{\left(\sum_{i}^{k} \phi_{i} \alpha_{i} \right)^{2}}{\left(\sum_{i}^{k} x_{i} C_{{\rm p},i} \right)^{2}}$$
(4)

where ϕ_i is the volume fraction of component (i) in the mixture referred to as the unmixed state, x_i is the corresponding mole fraction, T is the absolute temperature, and $\kappa_{S,i}$, V_i , α_i and $C_{p,i}$ are the isentropic compressibility, molar volume, thermal expansion coefficient, and molar heat capacity of the pure component (i), respectively. The values of α and $C_{p,i}$ were taken from literature [12]. α value for **2-Py** was evaluated in the same manner as suggested by Hilderbrand et al. [13]. The resulting $(\kappa_S)_{ijk}$ and $(\kappa_S^E)_{ijk}$ values for the various (i+j+k) ternary mixtures are recorded in Table 3. V_{iik}^{E} and $(\kappa_{S}^{E})_{iik}$ values for various ternary mixtures are plotted in Figs. 1-3 and 4-6 respectively.

Fig. 1. Molar excess volumes, V^E , for 2-pyrrolidinone (i)+benzene (j)+toluene (k) ternary mixture at 308.15 K.

 V_{ijk}^{E} and $(\kappa_{S}^{E})_{ijk}$ values for ternary mixtures were fitted to Redlich–Kister equation, Eq. (5):

$$X_{ijk}^{E}(X = V \text{ or } \kappa_{S}) = x_{i}x_{j} \left[\sum_{n=0}^{2} X_{ij}^{(n)} (x_{i} - x_{j})^{n} \right]$$
$$+ x_{j}x_{k} \left[\sum_{n=0}^{2} X_{jk}^{(n)} (x_{j} - x_{k})^{n} \right]$$

Fig. 2. Molar excess volumes, V^{E} , for 2-pyrrolidinone (i) + benzene (j) + o-xylene (k) ternary mixture at 308.15 K.

Fig. 3. Molar excess volumes, V^{E} , for 2-pyrrolidinone (i) + benzene (j) + p-xylene (k) ternary mixture at 308.15 K.

$$+x_{i}x_{k}\left[\sum_{n=0}^{2}X_{ik}^{(n)}(x_{k}-x_{i})^{n}\right]$$
$$+x_{i}x_{j}x_{k}\left[\sum_{n=0}^{2}X_{jk}^{(n)}(x_{j}-x_{k})^{n}x_{i}^{n}\right]$$
(5)

where x_i and x_j are the mole fractions of *i*th and *j*th components of (i + j + k) ternary mixture; $X_{ij}^{(n)}$ (n = 0-2), etc., $(X = V \text{ or } \kappa_S)$ are the parameters characteristic of (i + j), (j + k) and (i + k) binary mixtures and have been taken from literature [1,14,15]. $X_{ijk}^{(n)}$ $(X = V \text{ or } \kappa_S)$

Fig. 4. Excess isentropic compressibilities, κ_{S}^{E} , for 2-pyrrolidinone (i)+benzene (j)+toluene (k) ternary mixture at 308.15 K.

Fig. 5. Excess isentropic compressibilities, κ_S^E , for 2-pyrrolidinone (i)+benzene (j)+o-xylene (k) ternary mixture at 308.15 K.

Fig. 6. Excess isentropic compressibilities, κ_S^E , for 2-pyrrolidinone (i)+benzene (j)+p-xylene (k) ternary mixture at 308.15 K.

parameters were determined by fitting X_{ijk}^{E} data to Eq. (5) by the least-squares method and are recorded along with their standard deviations, $\sigma(X^{E})_{ijk}$ (X = V or κ_{S}) in Tables 2 and 3, respectively. The surfaces of ternary mixtures for V_{ijk}^{E} and ($\kappa_{S}^{E})_{ijk}$ values [calculated by employing Eq. (5)] are shown in Figs. 1–3 and 4–6, respectively.

4. Discussion

We are unaware of any published data for the investigated ternary mixtures with which to compare our results. V_{iik}^{E} and

 $(\kappa_{S}^{E})_{ijk}$ values for the studied mixtures are negative over the entire range of mole fractions. More negative V_{ijk}^{E} and $(\kappa_{S}^{E})_{ijk}$ values for **2-Py** (i)+benzene (j)+toluene (k) mixtures than those for **2-Py** (i)+benzene (j)+o- or p-xylene (k) mixtures suggest that toluene gives relatively more packed structure as compared to o- or p-xylenes in **2-Py**:benzene molecular entity. This may be due to the presence of two bulky –CH₃ groups in xylenes which restrict the approach of xylene to **2-Py**:benzene molecular entity.

4.1. Graph theory and results

According to mathematical discipline of Graph theory, the atoms of a molecule are represented by dots and bonds joining them are represented by lines. The resulting molecular graph then describes the total information contained in that molecule. If δ_m^v , δ_n^v , etc., represent the degree of *m*th, *n*th, etc., vertices of the graph of a molecule, then connectivity parameter of third degree of a molecule, ³ ξ , is defined [16] by

$${}^{3}\xi = \sum_{m < n < o < p} (\delta^{\nu}_{m} \delta^{\nu}_{n} \delta^{\nu}_{o} \delta^{\nu}_{p})^{-0.5}$$

$$\tag{6}$$

 δ_m^v , etc., is related the maximum valency, Z_m and number of hydrogen atoms, h, attached to *m*th vertex by relation $\delta_m^v = Z_m - h$ [17].

Analysis of molar excess volumes, V^{E} , molar excess enthalpies, H^{E} and excess isentropic compressibilities data of **2-Py**(i) + benzene or toluene or o- or p- or m-xylene (j) binary mixtures by Graph theory [1] reveals that (i) **2-Py** in pure state exists mainly as a mixture of open dimer and cyclic dimer; (ii) (i+j) mixtures are characterized by interactions between π -electrons spilling over nitrogen and oxygen atom of **2-Py** and π -electron cloud of aromatic ring to form 1:1 molecular complex. The thermodynamic properties, X^{E} (X = H or κ_{S}) for these mixtures were then expressed by Eq. (7):

$$X^{\rm E}(X = H \,{\rm or}\,\kappa_{\rm S}) = \frac{x_{\rm i} x_{\rm j} ({}^3\xi_{\rm i} / {}^3\xi_{\rm j})}{x_{\rm i} + x_{\rm j} ({}^3\xi_{\rm i} 0{}^3\xi_{\rm j})} [(1 + x_{\rm i})\chi'_{\rm ij} + x_{\rm j}\chi_{12}]$$
(7)

where χ'_{ij} and χ_{12} are the molar enthalpy and molar compressibility interaction parameters due to i–j contacts and specific interactions, respectively. H^E and κ^E_S data of the studied binary mixtures were well described by Eq. (7) which lends support to the assumptions made in deriving Eq. (7).

If a compound like toluene or o- or p-xylene is added to **2-Py** (i)+benzene (j) binary mixtures, then **2-Py** (i)+benzene (j)+toluene or o- or p-xylene (k) ternary mixture formation may be assumed to involve processes: (**1**) (a) formation of i_n -j (b) j-k and (c) i_n -k unlike contacts; (**2**) unlike contact formation then cause depolymerisation of i_n ; (**3**) monomers of i, j and k then undergo specific interactions to form i:j; j:k and i:k molecular entities. If χ'_{ij} , χ'_{jk} and χ'_{ik} are the molar volume and molar compressibility interaction parameter of unlike (i-j), (j-k) and (i-k) contacts, then change in molar properties, X^E (X = V or κ_S) due to processes (**1**)(a)-(c) can be expressed [18–20] by the relation:

$$X^{\mathrm{E}}(X = V \text{ or } \kappa_{\mathrm{S}}) = x_{\mathrm{i}} S_{\mathrm{j}} \chi_{\mathrm{ij}}' + x_{\mathrm{j}} S_{\mathrm{k}} \chi_{\mathrm{jk}}' + x_{\mathrm{k}} S_{\mathrm{i}} \chi_{\mathrm{ik}}'$$
(8)

where S_j , etc., are defined [18] by

$$S_i = \frac{x_i v_i}{\sum x_i v_i}$$

where v_i is the molar volume of component (i). So Eq. (8) reduces to Eq. (9):

$$\Delta X_1(X = V \text{ or } \kappa_{\rm S}) = \frac{x_i x_j \nu_j \chi'_{ij}}{\sum x_i \nu_i} + \frac{x_j x_k \nu_k \chi'_{jk}}{\sum x_j \nu_j} + \frac{x_k x_i \nu_i \chi'_{ik}}{\sum x_k \nu_k} \tag{9}$$

Further, if χ'_{ii} , χ_{12} , χ'_{12} and χ''_{12} are the molar volume and molar compressibility interaction parameters of i–i like contacts and

specific interactions (leading to the formation of i:j, j:k and i:k molecular entities), then change in thermodynamic properties due to processes (2) and (3) are given by [18–20]:

$$\Delta X_2(X = V \text{ or } \kappa_S) = \frac{x_i^2 x_j v_j \chi_{ii}'}{\Sigma x_i v_i}$$
(10)

$$\Delta X_3(X = V \text{ or } \kappa_S) = \frac{x_i x_j^2 \nu_j \chi_{12}}{\Sigma x_i \nu_i}$$
(11)

$$\Delta X_4(X = V \text{ or } \kappa_S) = \frac{x_j x_k^2 v_k \chi'_{12}}{\Sigma x_j v_j}$$
(12)

$$\Delta X_5(X = V \text{ or } \kappa_S) = \frac{x_k x_i^2 \chi'_{12}}{\Sigma x_k \nu_k}$$
(13)

The overall change in thermodynamic property, $X^{E}(X = V \text{ or } \kappa_{S})$ due to the processes (1)(a)–(c), (2) and (3) can then be expressed by Eq. (14):

$$X^{\mathrm{E}}(X = V \text{ or } \kappa_{\mathrm{S}}) = \sum_{i=1}^{5} \Delta X_{i}$$

= $\left[\frac{x_{i}x_{j}\nu_{j}}{\Sigma x_{i}\nu_{i}}\right] [\chi'_{ij} + x_{i}\chi'_{ii} + x_{j}\chi_{12}] + \left[\frac{x_{j}x_{k}\nu_{k}}{\Sigma x_{j}\nu_{j}}\right]$
 $\times [\chi'_{jk} + x_{k}\chi'_{12}] + \left[\frac{x_{i}x_{k}\nu_{i}}{\Sigma x_{i}\nu_{k}}\right] [\chi'_{ik} + x_{i}\chi''_{12}]$ (14)

since $v_j/v_i = ({}^3\xi_i/{}^3\xi_j)$ [21], So, Eq. (14) reduces to Eq. (15):

$$X_{ijk}^{E}(X = V \text{ or } \kappa_{S}) = \left[\frac{x_{i}x_{j}(^{3}\xi_{i}/^{3}\xi_{j})}{x_{i} + x_{j}(^{3}\xi_{i}/^{3}\xi_{j})}\right] [\chi'_{ij} + x_{i}\chi'_{ii} + x_{j}\chi_{12}] + \left[\frac{x_{j}x_{k}(^{3}\xi_{j}/^{3}\xi_{k})}{x_{j} + x_{k}(^{3}\xi_{j}/^{3}\xi_{k})}\right] [\chi'_{jk} + x_{k}\chi'_{12}] + \left[\frac{x_{i}x_{k}(^{3}\xi_{k}/^{3}\xi_{i})}{x_{k} + x_{i}(^{3}\xi_{k}/^{3}\xi_{i})}\right] [\chi'_{ik} + x_{i}\chi''_{12}]$$
(15)

Further, if it be assumed for the investigated (i+j+k) mixtures that $\chi'_{ij} \equiv \chi_{12} = \chi^*$; $\chi'_{jk} \equiv \chi'_{12}$; $\chi'_{ik} \equiv \chi''_{12}$; then Eq. (15) can be expressed as

$$X_{ijk}^{E}(X = V \text{ or } \kappa_{S}) = \left[\frac{x_{i}x_{j}(^{3}\xi_{i}/^{3}\xi_{j})}{x_{i} + x_{j}(^{3}\xi_{i}/^{3}\xi_{j})}\right] [(1 + x_{j})\chi^{*} + x_{i}\chi'_{ii}] \\ + \left[\frac{x_{j}x_{k}(^{3}\xi_{j}/^{3}\xi_{k})}{x_{j} + x_{k}(^{3}\xi_{j}/^{3}\xi_{k})}\right] [(1 + x_{k})\chi'_{jk}] \\ + \left[\frac{x_{i}x_{k}(^{3}\xi_{k}/^{3}\xi_{i})}{x_{k} + x_{i}(^{3}\xi_{k}/^{3}\xi_{i})}\right] [(1 + x_{i})\chi'_{ik}]$$
(16)

Eq. (16) contains four unknown parameters, and the values of these parameters were determined by employing X^E (X = V or κ_S) data at four compositions. The resulting parameters were then utilized to predict V_{ijk}^E and $(\kappa_S^E)_{ijk}$ values over the entire composition range. The V_{ijk}^E and $(\kappa_S^E)_{ijk}$ values along with χ'_{ii} , χ'_{ij} , etc., parameters, are recorded in Tables 2 and 3.

4.2. Flory theory

 V_{ijk}^{E} and $(\kappa_{S}^{E})_{ijk}$ data for the studied (i+j+k) ternary mixtures were next analyzed in terms of Flory theory. According to Flory

theory [22,23], V_{iik}^{E} for a ternary mixture is given by:

$$V_{ijk}^{E} = \bar{V}_{cal}^{E} \left[\sum_{i=i}^{k} x_i v_i^* \right]$$
(17)

where

$$\bar{\nu}_{i} = \left[\frac{1+\alpha_{i}(T/3)}{\left(1+\alpha_{i}T\right)^{3}}\right]^{3}$$
(18)

$$\bar{V}_{cal}^{E} = (\bar{\nu}_{0})^{7/3} \left[\frac{4}{3} - (\bar{\nu}_{0})^{1/3}\right]^{-1} [\bar{T} - \bar{T}_{0}]$$
(19)

$$\bar{T}_0 = \frac{(\bar{\nu}_0)^{1/3} - 1)}{(\bar{\nu}_0)^{4/3}} \tag{20}$$

$$\bar{\nu}_i^* = \frac{\nu_i}{\bar{\nu}_i} \tag{21}$$

$$\bar{\nu}_0 = \sum \phi_i v_i^* \tag{22}$$

$$\bar{T} = \left[\sum \frac{\phi_i P_i^* T_i}{\sum \phi_i P_i^*} \right] \left[1 - \phi_i \phi_j \chi_{ij}'' \left(\sum \phi_i P_i^* \right)^{-1} \right]^{-1}$$
(23)

$$\bar{T}_{i} = \frac{\bar{\nu}_{i}^{1/3} - 1}{\bar{\nu}_{i}^{4/3}}$$
(24)

$$P^* = \sum \phi_i P_i^* - \sum \phi_i^* \theta_j \chi_{ij}^{\prime\prime}$$
⁽²⁵⁾

$$P_{i}^{*} = \alpha_{i} T \bar{v}_{i}^{2} [(\kappa_{T})_{i}]^{-1}$$
(26)

all the terms have same significance as described elsewhere [22,23]. Evaluation of V_{ijk}^{E} by Flory theory requires a knowledge of reduced temperature, \overline{T} , which in turn depends upon adjustable parameters $\theta_{j}\chi_{ij}^{*}$, etc., of (i+j), (j+k) and (i+k) binary mixtures of (i+j+k) ternary mixtures. These parameters were determined by fitting H^{E} values [1,24] at $x_{i} = 0.5$ to Eq. (27).

$$H^{\rm E} = \sum x_i P_i^* (\bar{V}_i^{-1} - \bar{V}_{\rm cal}^{-1}) + x_i V_i^* \theta_j \chi_{\rm ij}^* V_{\rm cal}^{-1}$$
(27)

Various parameters of pure components were determined using isothermal compressibility (κ_T) reported in literature [12]. κ_T values for **2-Py** was calculated by employing ΔH_v values in the manner as suggested by Hilderbrand et al. [13]. Such V_{ijk}^E values evaluated via Eqs. (17)–(27) along with χ_{ij}^* , etc., parameters are recorded in Table 2.

 $(\kappa_{\rm S}^{\rm E})_{ijk}$ for a ternary mixture is expressed by Eq. (3) where the isentropic compressibility, $\kappa_{\rm S}$, of (i + j + k) ternary mixture, at effectively zero pressure is expressed by Eq. (28):

$$\kappa_{\rm S} = \frac{\kappa_{\rm T} - T v_m^* \alpha_{\rm p}^2}{C_{\rm p,m}} \tag{28}$$

The isothermal compressibility, κ_{T} , of a mixture at effectively zero pressure is given by relation:

$$\kappa_{\rm T} = \left[\frac{(3\bar{v}_m^2/p^*)(\bar{v}_m^{1/3} - 1)}{(4 - 3(\bar{v}_m^{1/3}))}\right]$$
(29)

where

$$v_m^* = \sum_{i=i}^{k} \phi_i v_i^*$$
(30)

$$\alpha_{\rm p} = \frac{3(\bar{\nu}_m^{1/3} - 1)}{T(4 - 3\bar{\nu}_m^{1/3})} \tag{31}$$

$$p_{*} = \sum_{i=i}^{k} \phi_{i} p_{i}^{*} - \sum_{i=i}^{k} \phi_{i} \theta_{j} \chi_{ij}^{*}$$
(32)

$$\bar{\nu} = \frac{\nu}{\nu^*} \tag{33}$$

$$\bar{\nu}_m = \sum_{i=i}^k \phi_i \nu_i^* \tag{34}$$

$$C_{p,m} = \left(\frac{\partial H_{ijk}^{E}}{\partial T}\right) + \sum_{i=i}^{k} x_{i} C_{p,i}$$
(35)

where \bar{v} , v_* , $C_{p,i}$ represent the reduced volume, characteristics volume, and molar heat capacities of component (i) in ternary mixtures. $\partial H^E_{ijk}/\partial T$ values at 308.15 K for **2-Py** (i) + benzene (j) + toluene or o- or p-xylene (k) ternary mixtures were evaluated by employing H^E values [1,24] values for their sub-binary (i+j), (j+k), (i+k) mixtures. H^E_{ijk} were taken equal to $H^E_{ij} + H^E_{jk} + H^E_{jk}$, H^E_{ij} , etc., values at 298.15 K were calculated in the manner described elsewhere [25]. κ^{id}_S values for the corresponding ideal mixtures were calculated using Eq. (28). While α^{id}_p and $c^{id}_{p,m}$ were taken as mole fraction average; κ^{id}_S were taken as volume fraction averages. Such (κ^E_S)_{ijk} values calculated for the present ternary mixtures are recorded in Table 2.

A pursual of data in Tables 2 and 3 reveals that V_{ijk}^E and $(\kappa_S^E)_{ijk}$ values predicted by Graph theory compare well with their experimental values. Even in those cases where the calculated and the experimental values are not in agreement, they are of same sign and magnitude. However, V_{ijk}^E and $(\kappa_S^E)_{ijk}$ values predicted by Flory theory are of same sign, but the qualitative agreement is poor. The failure of the Flory theory to correctly predict the magnitude of V_{ijk}^E values. $(\kappa_S^E)_{ijk}$ values may be due to the use of various parameters that were not available in the literature but have been estimated and also due to the nature of constituents of (i + j + k) mixtures.

Acknowledgement

The authors are grateful to the Head, Chemistry Department and authorities of M.D. University, Rohtak, for providing research facilities.

References

- [1] J.S. Yadav, Dimple, V.K. Sharma, Thermochim. Acta 489 (2008) 45-52.
- [2] H. Yekeler, A. Guven, R. Ozkan, J. Comput. Aided Mol. Des. 13 (1999) 589– 596.
- [3] J.A. Riddick, W.B. Bunger, T.K. Sakano, Organic Solvents Physical Properties and Methods of Purification, 4th ed., Wiley, New York, 1986.
- [4] B. Garcia, F.J. Hoyuelos, R. Alcalde, J.M. Leal, Can. J. Chem. 74 (1996) 121-127.
- [5] P.P. Singh, S.P. Sharma, J. Chem. Eng. Data 30 (1985) 477–479.
- [6] J. George, N.V. Sastry, J. Chem. Eng. Data 49 (2004) 235–242.
- [7] K. Tamura, S. Murakami, S. Doi, J. Chem. Thermodyn. 17 (1985) 325–333.
 [8] C.M. Sehgal, B.R. Porter, J.F. Greenleaf, J. Accoust. Soc. Am. 79 (1986) 586–
- 589. [9] S.W. Schaaf, Molecular Acoustics, Havdolt, New Series, Group II, London, 1967
- [10] G. Tardajos, M. Diazpena, E. Aircart, J. Chem. Thermodyn. 18 (1986) 683– 689.
- [11] G.C. Benson, O. Kiyohara, J. Chem. Thermodyn. 11 (1979) 1061-1064.
- [12] R.C. Weast (Ed.), CRC Handbook of Chemistry and Physics, 68th ed., CRC Hand Press, Boca Raton, FL, 1987.
- [13] J.H. Hilderbrand, J.M. Prusnitz, R.L. Scott, Regular and Related solutions, Van-Nonstand Reinheld Compound, New York, 1971.
- [14] P.P. Singh, V.K. Sharma, Can. J. Chem. 61 (1983) 2321–2328.
- [15] Romi, Ph.D. Thesis. Maharshi Dayanand University, Rohtak, Haryana, India, 2001.
- [16] P.P. Singh, Thermochim. Acta 66 (1983) 37–73.
- [17] L.B. Kier, S.H. Yalkowasky, A.A. Sinkula, S.C. Valvani, Physico-chemical Properties of Drugs, Mercel Dekker, New York, 1980.
- [18] M.L. Huggins, J. Phys. Chem. 74 (1970) 371-378.
- [19] M.L. Huggins, Polymer 12 (1971) 389-399.
- [20] P.P. Singh, M. Bhatia, J. Chem. Soc., Faraday Trans. I 85 (1989) 3807–3812.
 - [21] P.P. Singh, R.K. Nigam, K.C. Singh, V.K. Sharma, Thermochim. Acta 46 (1981) 175–190
 - [22] P.J. Flory, J. Am. Chem. Soc. 87 (1965) 1833-1838.
 - [23] A. Abe, P.J. Flory, J. Am. Chem. Soc 87 (1965) 1838-1846.
 - [24] P.P. Singh, V.K. Sharma, Z. Phys. Chem., Leipzig 265 (1984) 915–928.
 - [25] P.P. Singh, R.K. Nigam, V.K. Sharma, S.P. Sharma, K.C. Singh, Thermochim. Acta 52 (1982) 87-102.