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Department of Solid State Engineering, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
Department of Physical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
Department of Inorganic Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
European Commission, JRC, Institute for Transuranium Elements, Postbox 2340, D-76125 Karlsruhe, Germany
Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 120 00 Prague 2, Czech Republic

r t i c l e i n f o

rticle history:
eceived 27 January 2009
eceived in revised form 4 August 2009
ccepted 7 August 2009
vailable online 14 August 2009
eywords:

a b s t r a c t

The empirical Neumann–Kopp rule (NKR) for the estimation of temperature dependence of heat capacity
of mixed oxide is analyzed. NKR gives a reasonable estimate of Cpm for most mixed oxides around room
temperature, but at both low and high temperatures the accuracy of the estimate is substantially lowered.
At very low temperatures, the validity of NKR is shown to be predominantly determined by the relation
between the characteristic Debye and Einstein temperatures of a mixed oxide and its constituents. At
ixed oxides
eat capacity
stimation
eumann–Kopp rule

high temperatures, the correlation between their molar volumes, volume expansion coefficients and
compressibilities takes the dominance. In cases where the formation of a mixed oxide is not accompanied
by any volume change, the difference between dilatation contributions to heat capacity of a mixed oxide
and its constituents is exclusively negative. It turns out that in the high-temperature range, where the
contribution of harmonic lattice vibrations approached the 3NR limit, �oxCp assumes negative values.
For more complex oxides whose heat capacity has contributions from terms such as magnetic ordering,

app
electronic excitations, the

. Introduction

Binary and mixed oxides1 are currently being employed in
number of technical applications such as structural materi-

ls, protection coatings (thermal barrier coatings) and functional
aterials in electronics. Heat capacity at constant pressure is one

f the essential thermophysical characteristics determining the
hermal behavior of a given material. The temperature depen-
ence of heat capacity is also used in calculations of enthalpy
nd entropy changes with temperature changes, such as evalu-
tion of �fH(298.15 K) and Sm(298.15 K) from high-temperature
quilibrium measurements or in calculation of Gm (T) from the ther-
odynamic data for T = 298.15 K, in phase diagram computations.
Although heat capacity is a relatively easily accessible property
rom the experimental point of view and can be measured for solids
ver a broad temperature range from T → 0 up to their melting tem-
erature, Cpm data are still not available for a large number of mixed
xides, both stoichiometric compounds and solid solutions. In such

∗ Corresponding author.
E-mail address: jindrich.leitner@vscht.cz (J. Leitner).

1 Both stoichiometric compounds (e.g. Ca2SiO4) and solid solutions (e.g.
Ca1−xSrx)O or Bi(Nb1−xTax)O4) are referred to as mixed oxides in the following text.

040-6031/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2009.08.002
licability of NKR is only restricted to lattice and dilatation terms.
© 2009 Elsevier B.V. All rights reserved.

cases, heat capacity and its temperature dependence are usually
estimated on the basis of the empirical Neumann–Kopp rule (NKR)
[1].

NKR has been, for instance, recently applied in the following
cases of mixed oxides:

• High-temperature measurements of electromotive force (EMF) of
galvanic cells involving solid electrolytes and �fH(298.15 K) and
Sm(298.15 K) evaluation for Nd2Ir2O7, Nd6Ir2O13 (975–1450 K)
[2], AgRhO2 (980–1235 K) [3], NdMnO3, NdMn2O5 (925–1400 K)
[4], CaRuO3 (815–1053 K) [5] or Sr2RuO4, Sr3Ru2O7 (951–1098 K)
[6].

• Phase equilibria calculations and phase diagram mapping, e.g. for
the systems BaO–TiO2 [7], BaO–SrO–TiO2 [8], Al2O3–La2O3 [9].

• Interpretation of measured Cpm data of mixed oxides such as
BaUO3 [10], Ba2Te3O8, Ba3Te2O9 [11] Dy2TiO5, Gd2TiO5 [12] and
solid solutions (U,Th)O2 [13] or (U,Pu)O2 [14].

• Evaluation of thermal conductivity k = ˛�cp from the measured
thermal diffusivity ˛ and density � of LaAlO3, Sm2Zr2O7 and

Eu2Zr2O7 [15].

Based on the comparison of experimental values of
Cpm(298.15 K) and the values estimated using NKR for more
than 300 mixed oxides, Leitner et al. [16] corroborated the appli-

http://www.sciencedirect.com/science/journal/00406031
http://www.elsevier.com/locate/tca
mailto:jindrich.leitner@vscht.cz
dx.doi.org/10.1016/j.tca.2009.08.002
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Fig. 1. Temperature dependence of �oxCp for ZrMo2O8 (� ) and ZrW2O8 (�) [17].

ability of NKR in the vicinity of ambient temperature showing
hat NKR provides an estimate with an average error bar of 3.3%.
owever, in a number of other studies NKR was found to give a
uch larger error at both low and very high temperatures. Stevens

t al. [17,18] measured the temperature dependence of Cpm for
rW2O8, ZrMo2O8 [17] and Zn2GeO4 [18] in the range 0.5–400 K
nd found substantial positive deviations from NKR exhibiting a
aximum in a given temperature interval and then, a decrease

owards room temperature (see Fig. 1). A similar behavior was
bserved by Tojo et al. for solid solutions ZrO2–Y2O3 [19,20] and
eO2–ZrO2 [21] (13–300 K). Further examples of mixed oxides
evealing either positive or negative departures from NKR below
oom temperature are referred by Qiu and White [22]. On the other
and, the results of Richet and Fiquet [23] demonstrate that in the
ase of MgAl2O4, Mg2SiO4 and CaMgSi2O6 minerals, the difference
etween the experimental Cpm and NKR increases gradually from
mbient temperature reaching 4–6% at T ≈ 2000 K.

In the present work, we focus on a detailed analysis of NKR and
ts applicability for the prediction of temperature dependence of
he heat capacity of mixed oxides. An attention is in particular
rawn to the high-temperature region where an accurate esti-
ation of Cpm is crucial for the evaluation of calorimetric and

quilibrium measurement results as well as for calculations of
hase equilibria in mixed oxide systems.

. Neumann–Kopp rule

Neumann–Kopp rule has been postulated more than 140 years
go on the basis of an extensive collection of experimental Cpm

ata compiled by Kopp [1] and other researchers, in particular by
eumann and Renault, for solid substances. The rule (in original

erms the law) was first presented by Kopp in the following form:
Each element (in the solid state) has essentially the same specific or
tomic heat in compounds as it has in the free state”. Let us note that
compound is here referred to as a synonym to solid body which

nvolves both stoichiometric compounds and solid solutions and,
urthermore, only the Cpm values around ambient temperature are
onsidered.

The heat capacities of most of the elements known at that time
ere equal, in agreement with Dulong–Petit rule (law), to a value

6.7 J K−1 mol−1 (6.4 cal K−1 mol−1). However, for some elements

S, P, Si, B or C) Kopp recommended lower values obtained either
irectly from the measured values of the respective heat capac-

ties or from the Cpm data of some compounds formed by these
lements. Using this approach (from Cpm data of a compound and
ther elements forming this compound) hypothetical values of heat
a Acta 497 (2010) 7–13

capacities in a solid state were assessed for those elements which
occur in a gaseous state at normal conditions (H, O and F).

Mathematically, NKR can be expressed as follows: If a solid
compound AaBbCc is formed from solid elements A, B and C by a
reaction:

a A(s) + b B(s) + c C(s) = AaBbCc(s) (1)

then, according to NKR, the corresponding heat capacity reads:

Cpm(AaBbCc ,s) = a Cpm(A,s) + b Cpm(B,s) + c Cpm(C,s) (2)

Note that NKR cannot be generally considered as a simple addi-
tive scheme based on calculating a compound (molecule) property
as a sum of the respective properties of real elements forming
this compound, which is used for instance when calculating molar
weights from the atomic weights. The heat capacities of H, O and
F reported by Kopp should be rather considered as contributions
which have been evaluated by a mathematical approach and cannot
be experimentally determined. NKR thus represents a combina-
tion of an additive and contribution method. Later on, a number
of empirical contribution methods has been proposed that can be
applied for the estimation of heat capacities of solids, e.g. for binary
solid oxides [24,25], mixed oxides [16] or oxide glasses [26,27].

From the beginning, NKR has been a subject of a con-
siderable interest for researchers. Meyer [28] demonstrated
that NKR was satisfied for those solid compounds whose
molar volume was approximately equal to a stoichiometric
sum of atomic volumes of elements forming that compound.
According to his findings, Cpm(compound) >

∑
Cpat(elements) if

Vm(compound) >
∑

Vat(elements) and vice versa [28]. Neverthe-
less, the general validity of the above relation was later disproved
[29] and contradictory behavior was found for some other com-
pounds.

For the prediction of heat capacities of complex compounds NKR
was modified accordingly [16,22]. To estimate Cpm of a ternary
solid compound AaBbCc being formed upon a reaction of binary
compounds ACc1 and BCc2:

a ACc1(s) + b BCc2(s) = AaBbCc(s) (3)

we can assume:

Cpm(AaBbCc ,s) = a Cpm(ACc1,s) + b Cpm(BCc2,s) (4)

This modification not only increases the reliability of the esti-
mation [22], but also extends the applicability to those cases, when
an element does not occur in solid state at a given temperature and
pressure (e.g. complex halides, oxides, nitrides, etc.).

3. Temperature dependence of molar heat capacity

The molar heat capacity of a solid at constant pressure can be
expressed as a sum of several contributions [30]:

Cpm = Cph + Cdil + Cothers (5)

where Cph represents the contribution of lattice vibrations
(phonons), Cdil stands for lattice dilatation and Cothers com-
prises further contributions (conduction electrons, excitations of
localized electrons, ordering changes upon second order phase
transitions or formation of vacancies). The latter term, or rather
a sum of all other contributions, is not necessarily involved in all
solids and will not be considered hereafter. Although the forma-
tion of various defects such as oxygen vacancies is very common

in oxides, the heat capacity contribution from vacancies, Cvac, is
not considered in further analysis which is confined to stoichio-
metric ideal crystals. In general, Cvac is positive and increases with
temperature as Cvac ≈ (Evac/kBT)2 exp(−Evac/kBT), where Evac is the
energy of vacancy formation. Considering the typical values of Evac,
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constituent coefficients but also by atomic masses of cations whose
vibrations predominantly contribute the low frequency modes. For
instance, in the phonon spectrum (PDOS) of BaZrO3 (Fig. 3) calcu-
lated by direct method [38,39] the large peak centered at ∼2.5 THz
representing the acoustic phonons has a prevailing Ba-character
J. Leitner et al. / Thermoc

his term becomes important at temperatures close to the melting
oint [30].

The phonon contribution Cph can be expressed in terms of heat
apacity described within harmonic crystal approximation Char and
n additional correction to internal anharmonicity of vibrational
odes, Canh:

ph = Char + Canh (6)

he harmonic part assumes a general form:

har = R

∫ �max

0

(
h�

kBT

)2 eh�/kBT

[eh�/kBT − 1]2
g(�) d� (7)

here � is a specific phonon frequency and g(�) is the phonon den-
ity of states (PDOS). As the real phonon spectrum consists of three
coustic branches and 3N − 3 optical bands, where N is the number
f atoms per formula unit (or more appropriately per primitive unit
ell) of a given substance, it is convenient to approximate it by one
riply degenerate Debye mode simulating the acoustic modes and
N − 3 Einstein modes representing the optical modes:

har = 9R
(

T

�D

)3
∫ xD

0

x4ex

(ex − 1)2
dx + R

3N−3∑
i=1

x2
Ei

· exEi

[exEi − 1]2
(8)

ere xD = �D/T and xEi = �Ei/T with �D and �Ei being the character-
stic Debye and Einstein temperatures which can be considered as
ree parameters. To reduce the number of parameters to be fitted,
he Einstein modes can be grouped so that the essential features
f the phonon spectrum and their weights are reproduced. If the
articular phonon spectrum is unknown the Einstein modes are
sually grouped by trial-and-error to achieve the best fit with the
xperimental heat capacity. Nevertheless, such an approach is not
nly suitable for the analysis of experimental data. Since the char-
cteristic temperatures reveal clear trends within the isostructural
eries of compounds reflecting the dependence of lattice dynam-
cs on atomic masses and strengths of individual bonds, the hybrid
ebye–Einstein model can be used to estimate the heat capacities

n cases the experimental data are not available.
The correction for internal anharmonicity has been thoroughly

iscussed by Gillet et al. [31–35]. In a simplified form this correction
ould be considered as

ph =
∑

i

Char,i(1 − 2aiT) (9)

here ai is an anharmonic parameter of the ith vibrational mode
ith frequency �i defined as

i =
(

∂ ln �i

∂T

)
V

(10)

he anharmonic parameters are rare in literature. They can be
btained from high temperature—high pressure Raman and IR
pectroscopy. In general these values are negative in order of
1–5) × 10−5 K−1. It means that the anharmonic contributions are
ignificant at temperatures around 1000 K and higher. For example,
anh = 1.5%, 4.6% and 8.2% (from Cph) for Ca2GeO4 at 1000, 1500 and
000 K, respectively [31]. A detailed evaluation of Cpm and p–V–T
ata for Mg2SiO4 [36] allows to calculate Canh as well as Cdil terms

n the broad temperature range (Fig. 2).
For the dilatation term representing the difference between the

olar heat capacities at constant pressure and constant volume,
he relation:
dil = Cpm − CVm = TVm˛2

ˇ
= −T

(∂Vm/∂T)2
p

(∂Vm/∂p)T
(11)

s often applied including the experimental quantities—molar vol-
me, Vm, isothermal coefficient of volume expansion, ˛, and
a Acta 497 (2010) 7–13 9

isobaric compressibility, ˇ. Both the dilatation term and the
internal anharmonic correction are particularly relevant in high-
temperature range, where the harmonic part approaches the
Dulong–Petit limit 3NR. Hence, for the low temperature limit where
only the low frequency acoustic modes are active, we can simplify
the first Debye term in Eq. (8) and write:

T → 0 ⇒ Cpm → Char → 12�4R

5

(
T

�D

)3
(12)

while in the high-temperature limit each term in Eq. (8) approaches
the value of R (3R for triply degenerate Debye mode) and the
Dulong–Petit limit is thus applicable. Hence:

T

�D
� 1 ⇒ Cpm = Char + Canh + Cdil → 3NR + Canh + TVm˛2

ˇ
(13)

It follows from the above relations (12) and (13) that at very low
temperatures the NKR validity is predominantly conditioned by a
relation between the Debye and Einstein temperatures of a mixed
oxide and its constituents, while at high temperatures the relations
between Vm, ˛ and ˇ as well as the internal anharmonic corrections
are relevant.

4. NKR prediction of Cpm temperature dependence

Let us consider a formation of a mixed oxide from binary oxides
AOa and BOb described by the equation (assuming 1 mol of a mixed
oxide and xA, xB being the normalized constitution coefficients or
molar fractions of a stoichiometric phase or a solid solution, respec-
tively):

xA AOa(s) + xB BOb(s) = AxA BxB Oz(s),

z = xAa + xBb, xA + xB = 1 (14)

It follows from Eqs. (12) and (14) that at very low tempera-
tures, where no other but the low frequency acoustic modes are
populated, NKR is satisfied whenever the relation:

�D,AB = �D,A�D,B

(xB�3
D,A + xA�3

D,B)
1/3

(15)

holds for the pertinent Debye temperatures [30,37]. However, in
real mixed oxides the Debye temperature is not only weighted by
Fig. 2. Temperature dependence of Cpm and CVm for Mg2SiO4 [36]. Canh and Cdil

contributions are shown in the inset.
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Table 1
Debye and Einstein temperatures fitted on the experimental heat capacity data. All modes are triply degenerate for the former three compounds while the Einstein modes
of the latter two have the degeneracies 2 and 1, respectively.

Substance �D (K) �E1 (K) �E2 (K) �E3 (K) �E4 (K)

BaZrO3 182 ± 3 185 ± 4 393 ± 22 461 ± 27 846 ± 12
SrZrO3 209 ± 2 222 ± 4 465 ± 10 465 ± 10 844 ± 11
ZrO 354.4 ± 0.2 522.5 ± 0.4 874.9 ± 0.5 – –

(
s
(
s
d
s
l
a
p
g
l
o
t

F
o
d

F
l
c

2

BaO 177.8 ± 0.3 286.9 ± 0.9
SrO 271.8 ± 0.6 400 ± 2

80%) which entails the corresponding Debye temperature is only
lightly higher than that in BaO and much lower than in ZrO2
see Table 1). Moreover, as apparent from Fig. 3 the low frequency
pectrum of BaO reveals two distinct branches (noticeable as two
ifferent peaks located at 2 and 4 THz) while BaZrO3 shows only a
ingle peak. The different dispersion of acoustic branches in alka-
ine earth (and presumably also other highly ionic) binary oxides
nd in the respective mixed oxides is manifested by a positive
eak in the difference PDOS (shown in the inset of Fig. 3) and
ives rise to a very common positive divergence from NKR at

ow temperatures resulting also in positive values of the entropies
f formation from binary oxides, �oxS(298.15 K), at ambient
emperature.

ig. 3. Phonon density of states (PDOS) of BaZrO3 (solid line) and the constituent
xides (dashed lines) calculated using phonon [38] and VASP [39] programs. The
ifference PDOS is plotted in the inset.

ig. 4. Temperature dependence of �oxCp for SrZrO3 (�) and BaZrO3 (©). The solid
ines represent the Debye–Einstein fits and the dashed line corresponds to the heat
apacity of BaZrO3 calculated from phonon density of states (Fig. 3).
521 ± 2 – –
592 ± 4 – –

This characteristic behavior is demonstrated in Fig. 4 for two
selected mixed oxides as �oxCp(T) evaluated from the experi-
mental heat capacity data of BaZrO3 [40], SrZrO3 [40], BaO [41],
SrO [41] and ZrO2 [20]. In addition, the curves calculated from
Debye–Einstein fit, Eq. (8), are shown for both oxides and com-
pared with an ab initio based �oxCp(T) dependence calculated for
BaZrO3 (Eq. (7) and PDOS from Fig. 3). The fitted characteristic
temperatures of Debye–Einstein model (Eq. (8)) for all compounds
involved are summarized in Table 1. Note that the observed effect
is more pronounced in the case of SrZrO3 which exhibits even
lower Debye temperature compared to SrO. Moreover, the calcu-
lated phonon band structure of SrO shows even larger splitting of
acoustic branches than BaO.

Let us now focus on the high-temperature region, where Char
is saturated at the Dulong–Petit limit. Neglecting the anharmonic
corrections Canh, NKR is then satisfied if

�Cdil = Cdil,AB − xACdil,A − xBCdil,B

= TVm,AB˛2
AB

ˇAB
− xA

TVm,A˛2
A

ˇA
− xB

TVm,B˛2
B

ˇB
= 0 (16)

Let first assume a zero volume change accompanying the reac-
tion (14), i.e. �VAB = �oxV = 0 for a stoichiometric phase or
�VAB = �VM = 0 for a solid solution. In analogy to NKR for heat
capacities, Eq. (4), we can write for molar volume:

Vm,AB = xAVm,A + xBVm,B (17)

Note that in the case of solid solutions Eq. (17) is in contradic-
tion to Vegard’s law [42] postulating the additivity of lattice cell
parameters. The validity of the relation (17) for the stoichiometric
mixed oxides cannot be explicitly anticipated. Nevertheless, empir-
ical methods for the estimation of unit cell volumes of solid organic
and organometallic [43] as well as inorganic [44] substances as
sums of average volume contributions of the constituent elements
or ions, respectively, have been proposed, which is indeed in agree-
ment with (17). It can be proved (see Appendix A) that in such a
case:

�Cdil = −TxAxB
ˇAˇB

ˇAB

Vm,AVm,B

Vm,AB

(
˛A

ˇA
− ˛B

ˇB

)2
≤ 0 (18)

NKR is thus completely or nearly satisfied if the quotients ˛i/ˇi for
both constituents of a mixed oxide do not differ substantially. If
this is not the case, the heat capacity of the mixed oxide reveals
negative deviations from NKR.

Given the condition (17) is not satisfied, we express the molar
volume of a mixed oxide as

Vm,AB = xAVm,A + xBVm,B + �VAB (19)

whereas �VAB can attain both positive and negative values. Based
on the consideration shown in Appendix A we find out that the

sign of �Cdil is now also affected by the values of �˛AB and �ˇAB
(see relations (A14) and (A15) for definitions). For the combina-
tion �˛AB < 0 and �ˇAB > 0 a mixed oxide will exhibit the negative
deviations from NKR, while for other combinations this cannot be
determined a priori.
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Table 2
Molar volume at T = 298.15 K (Vm(298)), coefficient of thermal expansion (˛) and compressibility (ˇ) for selected oxides.

Substance Vm(298) (m3 mol−1) ˛ (K−1) ˇ (Pa−1)

BaZrO3 4.457 × 10−5 2.27 × 10−5 [47] 7.86 × 10−12 [48]
SrZrO3 4.162 × 10−5 2.65 × 10−5 [47] 2.96 × 10−12 [48]
ZrO2 2.118 × 10−5 2.69 × 10−5 [49] 5.35 × 10−12 [50]
BaO 2.681 × 10−5

SrO 2.069 × 10−5

F
c

t
a
p
c
r
(

C

T
h
S
f
u
m
s
t

F
c

ig. 5. Temperature dependence of Cpm for SrZrO3. Experimental data [46] (�), cal-
ulated according to NKR, Eq. (4) (�), calculated according to Eq. (20) (�)

As the difference between dilatation terms for a mixed oxide and
he stoichiometric sum of constituent binary oxides was recognized
s the crucial part of �oxCp at high temperatures, an improved
rocedure for estimation of the heat capacity of mixed oxides is
onsidered bellow. The �Cdil term (Eq. (16)) is simply added to the
ight side of Eq. (4) which for the mixed oxides Ax(A)Bx(B)Oz(s) (Eq.
14)) is read:

pm(AxA BxB Oz) = xACpm(AOa) + xBCpm(BOb) + �Cdil (20)

his procedure is now illustrated considering the high-temperature
eat capacity of SrZrO3 and BaZrO3. The Cpm data for binary oxides
rO, BaO and ZrO2 were taken from thermodynamic tables [45],
or the mixed oxides, SrZrO and BaZrO , the data from [46] were
3 3
sed. Other parameters necessary for �Cdil calculations are sum-
arized in Table 2. It should be noted that relevant data from other

ources are slightly different in some cases. Figs. 5 and 6 show
he temperature dependences of the heat capacity of SrZrO3 and

ig. 6. Temperature dependence of Cpm for BaZrO3. Experimental data [46] (�),
alculated according to NKR, Eq. (4) (�), calculated according to Eq. (20) (�).
3.87 × 10−5 [51] 1.45 × 10−11 [52]
4.17 × 10−5 [51] 1.10 × 10−11 [52]

BaZrO3 calculated according to NKR (Eq. (4)) and using the pro-
posed procedure (Eq. (20)) in comparison with experimental data.
It is obvious that the new method improves the Cpm prediction for
positive (SrZrO3) as well as for negative (BaZrO3) deviations from
the NKR.

5. Conclusions

Based on the performed analysis, we can conclude that the
empirical NKR is applicable for the heat capacities of solid sub-
stances around ambient temperature namely in those cases when
lattice vibration and dilatation terms are the only two contributions
of a mixed oxide and the corresponding binary oxides. At markedly
low temperatures, the nonzero value of �oxCp is related to the dif-
ference in the lattice contribution to the heat capacity of a mixed
oxide due to a change of vibrational frequencies upon formation
of mixed oxide. A detailed analysis of phonon spectrum BaZrO3
perovskite, taken as an example case, revealed the most striking
difference between the low frequency acoustic modes of BaZrO3
and BaO which gives rise to a positive divergence from NKR. The
observed difference bears apparently relation to different bond-
ing characteristics (coordination number and site symmetry) of
the large cation in the mixed and binary oxide. This tendency is
even accentuated when going to lighter alkaline earth analogues as
documented on an analysis of SrZrO3 in terms of Debye–Einstein
model.

At substantially higher temperatures, the departure of �oxCp

from zero is due to the difference between the dilatation terms as
a result of molar volume contraction or expansion as well as the
variation of thermal expansion and compressibility coefficients. A
simple modification of the NKR for the estimation of Cpm of mixed
oxides was suggested which consist in addition �Cdil term to the
stoichiometric sum of the heat capacities of the constituent binary
oxides.

For those oxides, whose heat capacity has contributions from
other terms (associated, e.g. with a magnetic ordering), NKR can
be only applied to their lattice contribution, as it has been demon-
strated on some stoichiometric mixed oxides such as LaFeO3 [53]
or ErFeO3 and HoFeO3 [54].
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Appendix A.
Derivation of a relation for the difference in dilatation contribu-
tions �Cdil = Cdil,AB − xACdil,A − xBCdil,B:

�Cdil = TVm,AB˛2
AB

ˇAB
− xA

TVm,A˛2
A

ˇA
− xB

TVm,B˛2
B

ˇB
(A1)
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et us first consider the case:

VAB = Vm,AB − xAVm,A − xBVm,B = 0 (A2)

t follows from the definition ˛ and ˇ coefficients (yA = xAVm,A/Vm,AB
nd yB = xBVm,B/Vm,AB) that:

AB = xAVm,A

Vm,AB
˛A + xBVm,B

Vm,AB
˛B = yA˛A + yB˛B (A3)

nd

AB = xAVm,A

Vm,AB
ˇA + xBVm,B

Vm,AB
ˇB = yAˇA + yBˇB (A4)

ith respect to Eq. (A2) it follows that yA + yB = 1.
The Eq. (A1) is divided by temperature T:

�Cdil

T
= Vm,AB

˛2
AB

ˇAB
− xAVm,A

˛2
A

ˇA
− xBVm,B

˛2
B

ˇB
(A5)

nd the resulting relation is further arranged into a form:

�Cdil

TVm,AB
= ˛2

AB
ˇAB

− yA
˛2

A
ˇA

− yB
˛2

B
ˇB

(A6)

he relation (A6) is now to be multiplied by a positive quo-
ient ˇAB/˛AB

2 and, simultaneously, the second and third term are
xtended by quotients yA/yA and yB/yB, respectively.

�Cdil

TVm,AB

ˇAB

˛2
AB

= 1 − (yA(˛A/˛AB))2

yA(ˇA/ˇAB)
− (yB(˛B/˛AB))2

yB(ˇB/ˇAB)
(A7)

et us define new variables uA, uB, vA, vB

A
˛A

˛AB
= uA, yB

˛B

˛AB
= uB, uA + uB = 1 (A8)

nd

A
ˇA

ˇAB
= vA, yB

ˇB

ˇAB
= vB, vA + vB = 1 (A9)

he expression (A7) is then arranged to

�Cdil

TVm,AB

ˇAB

˛2
AB

= 1 − u2

v
− (1 − u)2

1 − v
= F(u, v) (A10)

here u = uA, uB = 1 − u, v = vA, vB = 1 − v. The function F(u, v) can
e rewritten in a form:

(u, v) = − (v − u)2

v(1 − v)
= −v(1 − v)

[
u

v
− 1 − u

1 − v

]2
≤ 0 (A11)

hich provides the evidence that in case �VAB = 0 the value of �Cdil
ill never be positive. After substituting for u and v in (A10) we

btain the final formula:

Cdil = −TxAxB
ˇAˇB

ˇAB

Vm,AVm,B

Vm,AB

(
˛A

ˇA
− ˛B

ˇB

)2
≤ 0 (A12)

In the general case:

VAB = Vm,AB − xAVm,A − xBVm,B /= 0 (A13)

he following relations for ˛AB and ˇAB will result:

AB = yA˛A + yB˛B + 1
Vm,AB

(
∂�VAB

∂T

)
p

= yA˛A + yB˛B + �˛AB

(A14)

nd

1
(

∂�VAB

)

AB = yAˇA + yBˇB −

Vm,AB ∂p
T

= yAˇA + yBˇB + �ˇAB

(A15)

hereas yA + yB /= 1 and the variables �˛AB and �ˇAB can assume
oth positive and negative values. Unfortunately, it is not possible

[
[

[

[
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to express the difference in dilatation terms in such a form, which
would unambiguously show its sign. Nevertheless, the following
qualitative reasoning is conceivable: For �VAB = 0 is the expression
(A5) never positive. For �VAB /= 0, only the first term in (A5) will
change assuming the form:

Vm,AB
˛2

AB
ˇAB

= Vm,AB
(yA˛A + yB˛B + �˛AB)2

yAˇA + yBˇB + �ˇAB

= (xAVm,A˛A + xBVm,B˛B + Vm,AB�˛AB)2

xAVm,AˇA + xBVm,BˇB + Vm,AB�ˇAB
(A16)

If �˛AB < 0 and simultaneously �ˇAB > 0, the fraction
Vm,AB˛2

AB/ˇAB will be lower than in the case �VAB = 0 and
thus �Cdil < 0 (cf. Eq. (A5)). In all other cases the influence of
�˛AB and �ˇAB on the resulting sign of �Cdil cannot be definitely
determined.
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