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a b s t r a c t

As shown by Christensen et al. [2], temperature-induced stresses or strains can have a strong influence
on the frequency-dependent specific heat, especially of thin layers of viscoelastic materials near the glass
transition. Thus, both the mathematical representation and the physical understanding of these couplings
are essential for the interpretation of temperature-modulated DSC data. The approach provided in this
paper is based on thermodynamics with internal state variables. It thus differs from the transfer-matrix
method which has been applied in Refs. [2,29] and constitutes a thermodynamic basis from a different
point of view for the interpretation of the results obtained in Refs. [2,29,32]. Furthermore, although not the
object of this paper, time-domain simulations can also be done with the model presented thus allowing
for the calculation of temperature-ramping experiments and effects observed therein [42]. The approach
in this paper is restricted to one-dimensional states of stress and strain to focus on the main idea and
keep the mathematical formalism to a minimum. The Gibbs free energy is chosen as thermodynamic
potential and the primary variables – the stress and the temperature – are supplemented by a set of
internal state variables which is introduced to include history-dependent and hence viscoelastic effects.

The Gibbs free energy is approximated up to second order terms in the vicinity of a reference state.
Employing the Legendre transform, a corresponding expression for the Helmhotz free energy is obtained.
Evaluating the laws of thermodynamics, explicit frequency-dependent expressions for the specific heat
under constant stress or strain, the thermal expansion behaviour as well as the mechanical response
functions are obtained. Recently published formulations of the Prigogine–Defay ratio can also be derived

tutive
from the proposed consti

. Introduction

If the temperature of a glass-forming substance is continuously
educed, the thermal motion of its molecules is decelerated more
nd more and eventually becomes “frozen in” such that, if crys-
allization is avoided, the material undergoes a glass transition and
ecomes an amorphous solid. The characteristic temperature under
hich the solid remains stable within observable time frames is the

lass transition temperature. As the glass transition is a dynamic
henomenon [32,43], the value of the glass transition temperature

epends on the cooling rate and is not a material constant. The state
f the system in the glassy state is termed “metastable equilibrium”
44], “state of frozen structure” [30] or “frozen-in non-equilibrium
tate” [42] depending on the literature used.

∗ Corresponding author. Tel.: +49 089 60042494; fax: +49 089 60042386.
E-mail address: alexander.lion@unibw.de (A. Lion).

040-6031/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2009.12.014
model.
© 2009 Elsevier B.V. All rights reserved.

The glass transition is visible in material properties such as the

• mechanical modulus or compliance,
• coefficient of thermal expansion,
• specific heat.

It also occurs on varying the frequency in a cyclic experi-
ment, a fact which is often denoted “time–temperature” – or
“frequency–temperature” – correspondence, respectively [45]. The
described effects also occur as a result of electric excitations and
lead to a frequency dependence of the dielectric response func-
tion which is similar to that of the specific heat (see Refs. [31,33]).
In the glass-forming region, all material properties exhibit a pro-
nounced dependence on both the frequency and the temperature

at which the mechanical or the thermal excitation is applied with
small changes in the input resulting in large changes in the output
quantity [2,3,8,9,13,17,26]. While the component in-phase with the
excitation, the storage component, changes from a higher to a lower
value or vice versa, depending on the property, the out-of-phase or

http://www.sciencedirect.com/science/journal/00406031
http://www.elsevier.com/locate/tca
mailto:alexander.lion@unibw.de
dx.doi.org/10.1016/j.tca.2009.12.014
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Nomenclature

t, ω time and angular frequency
PDSC power absorbed by the sample
�m,�V, � mass, volume and mass density of the sample
 , g, s, e Helmholtz and Gibbs free energy, entropy and inter-

nal energy per unit mass
T,E, Ṫ, Ė stress and strain tensor and their time derivatives
�, ε uniaxial stress and strain
�q, r heat flux vector and volume-distributed heat supply

per unit mass
�, � thermodynamic temperature and rate of entropy

production
ref index of variables associated with the equilibrium

reference state
ϑ, ϑ̂ temperature perturbation and its amplitude
ı- non-equilibrium perturbation of the internal vari-

able vector

, �, � non-equilibrium perturbation of entropy, strain and

stress
a, b, u, k, 
 scalar material parameters in the approximation

of the Gibbs free energy
c-, e-,w- material parameter vectors in the approximation of

the Gibbs free energy
cp0, cv0, E0, �0 physical material parameters belonging to the

glassy state
n number of internal variables
d--
, A--

material parameter matrices of dimension n × n

�̂- p, �̂- v, �̂- �, �̂- � transfer function vectors of the internal
variables

ĉp, ĉv complex specific heat at constant stress and strain
Ĵ, Ê complex compliance and modulus
�̂, �̂ complex coefficient of thermal expansion and ther-

mal modulus
div (·) divergence operator: div(�q) = ∂q1/∂x1 + ∂q2/∂x2 +

∂q3/∂x3
grad (·) gradient operator: grad(�) =

(
∂�/∂x1

)
�e1 +(

∂�/∂x2
)

�e2 +
(
∂�/∂x3

)
�e3

˛k, -̨ scalar internal variable and column vector: -̨ =
(˛1, . . . , ˛n)T

f
-
, f̃

-
column vector of the functions f

-
= (f1, . . . , fn)T and

f̃
-

= (f̃1, . . . , f̃n)
T

1--
, X--

−1 unit matrix of dimension n × n, inverse of the n × n

matrix X--
with X--

X--
−1 = 1--

X · Y scalar product between two second order tensors:

X · Y =
3∑

i,k=1

XikYik

�x · �y scalar product between two physical vectors: �x · �y =
3∑
i=1

xiyi

x- · y
-

scalar product between two columns: x- · y
-

=
n∑
xkyk

l
r

b

derived and interpreted in a single consistent model so far.
k=1
Re(z), Im(z) real and imaginary parts of a complex number z
oss component runs through a maximum in the glass-transition
egion.

The mechanical, frequency-dependent, material behaviour can
e investigated experimentally by prescribing a sinusoidal strain
a Acta 500 (2010) 76–87 77

or stress history and measuring the modulus or compliance. The
theory of linear viscoelasticity, see e.g. Tobolsky [6], has been suc-
cessfully applied to model the observed phenomena whether it is
discrete or continuous spectra, hence linear differential equations
or convolution integrals, being used as depicted by Tschoegl [4] or
Gross [5] or approaches from fractional calculus as used by Lion [7].

Mechanical tests in which the temperature is a prescribed
function of time are uncommon and rare. Exceptions are static
temperature-controlled tests to determine the coefficient of ther-
mal expansion. Bauer et al. remarked in Ref. [9] “On the other hand,
we do not know of an experimental report on the explicit frequency
dependence of the thermal expansivity”. In this article as well as
in Ref. [10], the frequency dependence of the thermal expansion
behaviour of polystyrene films was illustrated by them for the first
time. As a result, the characteristic behaviour of the components
of the complex coefficient of thermal expansion could be estab-
lished: the storage component changes from a lower glassy value
to a higher relaxed value as the temperature about which the per-
turbation is applied is increased while at the same time the loss
component runs through a maximum.

Experimental investigations under continuously varying tem-
perature excitations and constant stress (or pressure) are carried
out to analyse the calorimetric material properties and to deter-
mine the heat capacity. Commonly used techniques are differential
scanning calorimetry, known as DSC, and temperature-modulated
differential scanning calorimetry, known as TMDSC. In this context,
the reader is referred to the textbook by Höhne et al. [12]. In clas-
sical DSC, the temperature of the specimen changes with constant
rate whereas in TMDSC a sinusoidal temperature oscillation with
small amplitude is superimposed. The frequency dependence of the
specific heat of glycerol, a well-known glass-forming substance, has
originally been observed and physically interpreted by Christensen
[14] or Birge and Nagel [26] and later by Minakov et al. [15] or Ben-
tefour et al. [16], to name a few. For the representation and the
interpretation of the frequency dependence of the specific heat in
the context of irreversible thermodynamics, different approaches
have been developed in the last decade (see e.g. Refs. [17–21]).

Christensen et al. [2] localized an essential problem if the spe-
cific heat cp(ω) of a highly viscous liquid is measured using a thin
specimen which is fixed on a substrate. As it is known from gases,
the specific heat depends on the boundary conditions: if the volume
is constant, the specific heat cv is measured, and if the pressure is
constant cp is measured. According to Ref. [2], the oscillating tem-
perature induces oscillating thermal strains when the pressure is
constant. If, on the other hand, the volume is constant, the ther-
mal strains are suppressed. This leads to thermal stresses which
influence the specific heat. If the specific heat of a thin film of a
highly viscous liquid is measured, neither the pressure nor the vol-
ume is constant in space and time. In order to clarify this aspect, it
is indispensable to investigate the mechanical material properties
in the neighbourhood of the glass transition as well. Christensen
et al. have shown in [2], that Birge and Nagel [26], measured the
so-called longitudinal specific heat.

This short literature review has shown that glass-forming mate-
rials exhibit frequency-dependent effects which can be observed
in properties such as the compliance, the coefficient of thermal
expansion and the specific heat. It has been known for a long time
that the different frequency-dependent response functions are not
independent from each other (see Refs. [30,32,34,38]). But despite
this fact, closed-form expressions for these quantities, their cou-
plings and their dependence on material parameters have not been
Inspired by the works published in Refs. [2,29,30], the other lit-
erature cited above and earlier works of our group [20,24,25], it is
the objective of this essay to provide a single constitutive approach
on the basis of thermodynamics with internal state variables from
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hich explicit relations for the frequency-dependent specific heat
t constant stress or strain, the thermal expansion behaviour and
he dynamic mechanical response functions can be derived.

Based on the fundamentals provided in the following chap-
er, the model is formulated for one-dimensional states of stress
nd strain. In the neighbourhood of a state of thermodynamic
quilibrium as a reference state, the specific Gibbs free energy
s approximated using a Taylor series up to second order terms
epending on stress, temperature and a set of internal variables.
his approach was motivated by the article of Lesikar and Moynihan
30]. With the help of the Legendre transform and after applying the
ools provided by the theory of thermodynamics, closed-form rela-
ions for the mentioned material properties are established. Also
ifferent forms of the Prigogine–Defay ratio can be obtained from
he model presented.

Before getting into the modelling part, a short discussion
s needed, since several conceptions regarding the introduction
f additional state variables are used in literature to describe
lass-forming materials. From the mathematical point of view,
nternal variables [4,20,23,28], configurational or fictive temper-
tures [37,39] or order parameters [30,32,35,39,41] are introduced
or one and the same reason: if a material exhibits a history-
ependent behaviour, the current values of stress or strain and
emperature or entropy are not sufficient to characterise its
urrent state. From the point of view of phenomenological mate-
ial modelling, fictive or configurational temperatures and order
arameters can be interpreted as internal variables with special
hysical meanings. In models of viscoelasticity, for example, which
re formulated using Maxwell chains, the definition of the internal
ariables is not unique: both the inelastic strains of the dashpots
r the stresses of the Maxwell elements can be taken as internal
ariables. It is also possible, to eliminate the internal variables and
o represent the current stress as a linear functional of the strain
istory. A detailed study regarding the number of internal vari-
bles which is necessary to model the glass transition leads to
he Prigogine–Defay condition, which is an inequality between the
emperature- or frequency-induced changes in specific heat, ther-

al expansion coefficient and compressibility. The reader who is
nterested in this field is referred to refs. [30,32,34–36,38]. In the
urrent paper, the discussion whether one or more internal vari-
bles are necessary to model the dynamic material behaviour in
he vicinity of the glass transition is not conducted. It should be

entioned, however, that there is an ongoing discussion on the
umber of variables which is required to describe the dynamics
f glass-forming substances [36,41]. Since the microstructure of
lass-forming materials does not change at the glass transition (see
ef. [46]), the internal variables introduced in this paper have no
tructural counterpart: they are introduced to describe the history-
ependent material behaviour.

. Fundamentals

In order to formulate the constitutive model, some basics are
ntroduced first. For more details the reader is referred to the text-
ooks of Haupt [22] or Maugin [23]. The thermodynamic potentials
sed in this paper are the specific Gibbs and Helmholtz free energy.
he specific Helmholtz free energy per unit mass is defined as

= e− �s. (2.1)

he quantity s is the specific entropy per unit mass, � the thermo-

ynamic temperature and e the specific internal energy per unit
ass. The specific Gibbs free energy is defined as

=  − 1
�

T · E. (2.2)
a Acta 500 (2010) 76–87

T is the stress tensor, E the infinitesimal strain tensor and � the
mass density. As shown in Ref. [20], the corresponding formula-
tions of the local balance equation of energy, or the first law of
thermodynamics, read as

� ̇ = T · Ė − �
(
�ṡ+ s�̇

)
− div

(�q
)

+ �r, (2.3)

�ġ = −E · Ṫ − �
(
�ṡ+ s�̇

)
− div

(�q
)

+ �r. (2.4)

The vector �q is the heat flux and r the heat supply per unit mass.
The related formulations of the Clausius–Duhem inequality, or the
second law of thermodynamics, can be written as

��� = −� ̇ + T · Ė − �s�̇ − �q · grad(�)
�

≥ 0, (2.5)

��� = −�ġ − E · Ṫ − �s�̇ − �q · grad(�)
�

≥ 0. (2.6)

The Clausius–Duhem inequality states that the specific entropy
production per unit time � always has to be non-negative. This
statement has to be satisfied by any constitutive model for arbitrary
thermomechanical processes.

If the Helmholtz free energy  is taken as thermodynamic
potential the rates of strain and temperature occur in (2.5); if
the Gibbs free energy g is taken as potential, the rates of stress
and temperature occur in the corresponding form (2.6) of the
Clausius–Duhem inequality. This structure motivates the following
sets of canonical independent variables of  and g:

 =  
(

E, �, -̨
)

(2.7)

g = g
(

T, �, -̨
)

(2.8)

The internal state variables

˛ = (˛1, . . . , ˛n)T (2.9)

are introduced to consider the dependence of the material
behaviour on the history of strain or stress and temperature. The
evolution of the internal variables is modelled by a system of dif-
ferential equations depending on � and E or, alternatively, on � and
T:

˙̨- (t) = f̃
-

(
E, �, -̨

)
with f̃ =

(
f̃1, . . . , f̃n

)T
(2.10)

˙̨- (t) = f
-

(
T, �, -̨

)
with f = (f1, . . . , fn)T (2.11)

The column vectors of the partial derivatives

∂ 

∂˛
=

(
∂ 

∂˛1
, . . . ,

∂ 

∂˛n

)T

and
∂g

∂˛
=

(
∂g

∂˛1
, . . . ,

∂g

∂˛n

)T

(2.12)

in combination with the scalar products

∂ 

∂˛
· ˙̨ =

n∑
k=1

∂ 

∂˛k
˙̨ k and

∂g

∂˛
· ˙̨ =

n∑
k=1

∂g

∂˛k
˙̨ k (2.13)

are introduced to allow for a compact notation. For the considera-
tions in the next chapters, the formulations of the equation of heat
conduction with the Gibbs and Helmholtz free energies are needed
(the details of this calculation are sketched in Appendix A):

−�� ∂
2 

∂�2
�̇ + �

(
∂ 

∂ -̨
− � ∂

2 

∂�∂ -̨

)
· f̃
-

= �� ∂
2 

∂�∂E
· Ė − div(�q) + �r

(2.14)
−�� ∂
2g

∂�2
�̇ + �

(
∂g

∂ -̨
− � ∂

2g

∂�∂ -̨

)
· f
-

= �� ∂
2g

∂�∂T
· Ṫ − div(�q) + �r

(2.15)
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When studying thermomechanical processes at constant strain,
he first term on the right-hand side of (2.14) vanishes and the for-

ulation of the constitutive model with the Helmholtz free energy
s favourable. But if the stress is constant the equation of heat con-
uction in the form of (2.15) is more useful.

. Constitutive model

The constitutive model to be developed is formulated to describe
he material behaviour in the neighbourhood of a state thermo-
ynamic equilibrium as a reference state. The reference state is
efined by constant values of all external and internal state vari-
bles and its neighbourhood by sufficiently small changes in these
uantities. A similar concept has been applied some years earlier

n Ref. [30] in order to model dielectric relaxation effects in glasses.
For the following considerations, two equivalent formulations

f the constitutive model are needed: the primary formulation is
ased on the specific Gibbs free energy as thermodynamic poten-
ial and the secondary formulation on the Helmholtz free energy.
o sketch the main ideas and to reduce the mathematical formal-
sm to a minimum, a one-dimensional state of stress is assumed
uch that the three-dimensional stress tensor T = ��e1 ⊗ �e1 can be
eplaced by the scalar stress �. The strain in the corresponding
irection is denoted asε and the lateral strains asε2 and ε3 such that
= ε�e1 ⊗ �e1 + ε2�e2 ⊗ �e2 + ε3�e3 ⊗ �e3 is the three-dimensional strain

ensor. As a consequence, T·E =�ε holds. Under these assumptions,
rom (2.7), (2.8) and (A.5)–(A.8) in Appendix A the relations which
re summarized in Table 1 are obtained.

The state of the material in the equilibrium reference state is
haracterised by constant values of temperature �ref, strain εref,
tress �ref, entropy sref, Gibbs free energy gref and Helmholtz free
nergy  ref as well as by the constant internal variable vector ˛ref.
he Gibbs and Helmholtz free energies belonging to this state are
iven by the expressions

ref = g(�ref, �ref, ˛ref), (3.1)

ref =  (εref, �ref, ˛ref). (3.2)

The rate of change in the internal variables vanishes in the equi-
ibrium and the resulting equations can be used to calculate˛ref (cf.
ef. [30]):

= f (�ref, �ref, -̨ ref) ⇔ -̨ ref = ϕ(�ref, �ref) (3.3)

= f̃ (εref, �ref, -̨ ref) ⇔ -̨ ref = ϕ̃(εref, �ref) (3.4)

To model the non-equilibrium behaviour of the material, a set
f time-dependent perturbation functions �, ϑ, 
, � and ı- is intro-
uced such that the current values of stress, temperature, entropy,
train and internal variables can be expressed as

(t) = �ref + �(t), (3.5)

(t) = �ref + ϑ(t), (3.6)

(t) = sref + 
(t), (3.7)

(t) = εref + �(t), (3.8)

(t) = ˛ref + ı(t). (3.9)

The perturbation functions are assumed to vanish in the refer-
nce state. It is also assumed that they are sufficiently small such
hat a quadratic approximation of the Gibbs free energy can be used
o model the physical phenomena of interest.
.1. Formulation with the Gibbs free energy

To represent the non-equilibrium behaviour of the Gibbs free
nergy Ref. [20] is followed and the approximation used there is
a Acta 500 (2010) 76–87 79

extended by the stress perturbation and its couplings with the
changes in the temperature and the internal variables:

g(�, �, -̨ ) = gref + aϑ + b

2
ϑ2 + c · ı+ 1

2
(dı) · ı+ e · ıϑ + u�

+ k
2
�2 + v�ϑ +w- · ı� (3.10)

The quantities c-, e- and w- are column vectors of dimension n
containing material constants; gref, a, b, u, k, v are scalar mate-
rial parameters. The n × n matrix d--

contains material constants and
is assumed to be positive definite, symmetric and invertible, i.e.
x- ·

(
d--
x-
)
> 0 as well as x- ·

(
d--
d--

−1d--
x-
)

=
(
d--
x-
)

· d--
−1 (

d--
x-
)
> 0 holds for

arbitrary vectors x- /= 0-.
Evaluating the potential relations for the strain and the spe-

cific entropy on the right-hand side of Table 1 and calculating the
entropy production leads to the following expressions:

εref + �(�,ϑ, ı) = −�∂g
∂�

= −�(u+ k� + vϑ +w- · ı) (3.11)

sref + 
(�,ϑ, ı) = − ∂g
∂ϑ

= −(a+ bϑ + e · ı+ v�) (3.12)

−∂g
∂ı

· ı̇ = −(c + dı+ eϑ +w- �) · ı̇ ≥ 0 (3.13)

The requirement for a non-negative entropy production (see
Table 1) motivates the following system of differential equations
for the internal variables

ı̇ = −A--
(
c + dı+ eϑ +w- �

)
, ı-(0) = 0-, (3.14)

where the matrix A--
is symmetric and positive definite and contains

additional material parameters. For the initial conditions at time
t = 0, ı-(0) = 0- is assumed. The evaluation of (3.11), (3.12) and (3.14)
in the equilibrium leads to

εref = −�u, (3.15)

sref = −a, (3.16)

ı̇(0,0,0) = −A--c. (3.17)

To avoid that the internal variables evolve in the equilibrium c- =
0- must hold. Assuming an infinitely fast stress-controlled process
under isothermal conditions such that �(t) /= 0 and ϑ(t) ≡ 0, (3.14)
leads to ı-(t) = 0-. Thus, the internal variables remain frozen under
infinitely fast changes in stress. Taking ı-(t) = 0- in combination with
u = 0 and (3.11) into account a linear elastic relation for the change
in the strain is obtained:

� = −�k� =:
1
E0
� (3.18)

The constant E0 = −1/(�k) is the glassy or spontaneous elastic
modulus. If an infinitely fast temperature-controlled stress-free
process is prescribed, i.e. �(t) ≡ 0 and ϑ(t) /= 0, (3.14) also leads
to ı-(t) = 0-. Taking this in combination with u = 0 and (3.11) into
account a linear relation between the changes in temperature and
strain is obtained:

� = −�vϑ =: �0ϑ. (3.19)

The parameter �0 = −�v can be interpreted as the glassy or spon-
taneous coefficient of thermal expansion.
With the definition (A.21) in Appendix A the specific heat at
constant stress can be calculated:

cp
(
�,ϑ, ı

)
= −

(
�ref + ϑ

) ∂2g

∂ϑ2
= −

(
�ref + ϑ

)
b (3.20)
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Table 1
Thermodynamic relations for the one-dimensional constitutive model.

Thermodynamic potential  =  
(
ε, �, -̨

)
g = g

(
�, �, -̨

)
Stress or strain �

(
ε, �, -̨

)
= �∂ /∂ε ε

(
�, �, -̨

)
= −�∂g/∂�

Specific entropy s(ε, �, -̨ ) = −∂ /∂� s(�, �, -̨ ) = −∂g/∂�
˙̨- (t) =
��� =

∞
c

i

d
c

G

S

E

I

r
t
u
u
t
c

4
a

c
t
t
w
f
e
a
e

(
f

Evolution of the internal variables

Entropy production of internal variables

Evaluating (3.20) in the glassy state, i.e. for ϑ = 0, |ϑ̇| →
, ı- = 0-, the constant

p0:=cp(0,0,0) = −�0b (3.21)

s defined. It is the specific heat in the glassy state.
With the material parameters defined so far, the basic equations

efining the constitutive model on the basis of the Gibbs free energy
an be written as follows:

ibbs free energy : g = gref − srefϑ − cp0

2�ref
ϑ2 + 1

2

(
dı

)
· ı+ e · ıϑ

− εref

�
� − 1

2�E0
�2 − �0

�
�ϑ +w- · ı�

(3.22)

train : � = 1
E0
� + �0ϑ − �w- · ı (3.23)

ntropy : 
 = cp0

�ref
ϑ − e · ı+ �0

�
� (3.24)

nternal variables : ı̇ = −A--
(
dı+ eϑ +w- �

)
(3.25)

In this theory, the changes in strain and entropy as well as the
ates of the internal variables are linear functions of the changes in
he independent state variables. It is profitable when the stress is
sed as mechanical state variable. If not the stress but the strain is
sed as independent mechanical state variable, the formulation of
he model with the Helmholtz free energy is more profitable. The
orresponding formulation is derived in Appendix B.

. Frequency-dependent specific heat at constant stress
nd constant strain

For the calculation of the frequency-dependent specific heat at
onstant stress ĉp(ω) and at constant strain ĉv(ω) the balance equa-
ion of energy in the form of (2.14) and (2.15) is considered. In
he case of ĉp(ω) the Gibbs free energy is the appropriate potential
hile in the case of ĉv(ω) the Helmholtz free energy is suitable. The

unction ĉv(ω) can also be calculated on the basis of the Gibbs free
nergy, but the calculation is more costly since the changes in stress
t constant strain have to be considered in the balance equation of
nergy (2.15).

Assuming the stress or the strain to be constant, considering
3.6) and setting the volume-distributed heat supply r to zero, the
ollowing relations are obtained from (2.14) and (2.15):

Constant stress : −(�ref + ϑ)
∂ 2g

∂ϑ2
ϑ̇ +

(
∂g

∂ı-
− (�ref + ϑ)

∂ 2g

∂ϑ∂ı-

)
· ı̇-

= − 1
�

div(�q) (4.1)( )

Constant strain : −(�ref + ϑ)

∂ 2 

∂ϑ2
ϑ̇ + ∂ 

∂ı-
− (�ref + ϑ)

∂ 2 

∂ϑ∂ı-
· ı̇-

= − 1
�

div(�q) (4.2)
f̃
-
(ε, �, -̨ ) ˙̨- (t) = f

-
(�, �, -̨ )

−�∂ /∂˛ · f̃ ≥ 0 ��� = −�∂g/∂˛ · f ≥ 0

In Appendix C, relations (4.1) and (4.2) are evaluated and refor-
mulated with regard to the constitutive assumptions (3.22)–(3.25),
or (B.7)–(B.11), and prescribed temperature processes. If the heat
power per unit mass which is absorbed or emitted by the speci-
men of mass �m is denoted as PDSC(t), the following results are
obtained:

Constant stress : cp0ϑ̇ + �ref e ·
(
A
(
eϑ + dı

))
+cp0

ϑ

�ref
ϑ̇ − ı ·

(
dA

(
dı+ eϑ

))
= PDSC (t)

�m
(4.3)

Constant strain : cv0ϑ̇ + �ref ẽ ·
(
A
(
ẽϑ + d̃ı

))
+ cv0

ϑ

�ref
ϑ̇ − ı ·

(
d̃A

(
d̃ı+ ẽϑ

))
= PDSC (t)

�m
(4.4)

If the temperature change ϑ(t) is a prescribed function of time,
(4.3) and (4.4) can be used to calculate the calorimetric response
PDSC(t) under constant stress or strain conditions. To compute the
frequency-dependent specific heat at constant stress or strain,
a harmonic temperature change with angular frequency ω and
amplitude ϑ̂ is prescribed:

ϑ(t) = ϑ̂eiωt (4.5)

For this process, the linear differential Eqs. (3.25) and (B.8) can
be solved for � = 0 and �= 0, respectively, in closed form. Their sta-
tionary solutions are expressed as

ı-p(t) = �̂- p(ω)ϑ̂eiωt, (4.6)

ı-v(t) = �̂- v(ω)ϑ̂eiωt. (4.7)

The vectors �̂- v(ω) and �̂- p(ω) are the transfer functions of the
internal variables for �= 0 and for � = 0. Considering (4.5), (3.25)
and (B.8), they can be calculated as

�̂- p (ω) = −
(
iω1 + Ad

)−1
Ae, (4.8)

�̂- v(ω) = −
(
iω1 + Ad̃

)−1
Aẽ. (4.9)

Inserting (4.5) in combination with (4.6), (4.7) and the transfer
functions (4.8), (4.9) into (4.3) and (4.4) and rearranging the terms
leads to:

Constant stress :
(
cp0 − �ref e · �̂- p (ω)

)
iωϑ̂eiωt

+iω
( cp0

�ref
+ �̂- p (ω) · d�̂- p (ω)

)
ϑ̂2e2iωt = PDSC

�m
(4.10)

Constant strain :
(
cv0 − �ref ẽ · �̂- v(ω)

)
iωϑ̂eiωt

+ iω
(
cv0 + �̂ (ω) · d̃�̂ (ω)

)
ϑ̂2e2iωt = PDSC (4.11)
�ref
- v - v �m

As can be seen, there are two frequencies in the calorimetric
responses (4.10) and (4.11): one term oscillates with ω and the
other with 2ω. The 2ω-term is small because it is multiplied with
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ˆ 2 [20]. Since the factor iωϑ̂eiωt is the temperature rate, its coeffi-
ients can be interpreted as frequency-dependent specific heat at
onstant stress and or strain, respectively:

ˆp(ω) = cp0 − �ref e · �̂- p(ω) (4.12)

ˆv(ω) = cv0 − �ref ẽ · �̂- v(ω) (4.13)

Taking (4.8) and (4.9) as well as (B.9), (B.10) and (B.11) in
ppendix B into account, the explicit forms of the frequency depen-
ent specific heat read as:

ˆp(ω) = cp0 + �ref e ·
(
iω1--

+ A--d--
)−1
A--
e (4.14)

ˆv(ω) = cp0 − �refE0�2
0

�
+ �ref (e− E0�0w- )

·
(
iω1--

+ A--
(
d+ �E0w- ⊗w-

))−1
A-- (e− E0�0w- ) (4.15)

The expression (4.15) of the frequency-dependent specific heat
t constant strain has the same structure as (4.14) which is
he frequency-dependent specific heat at constant stress. It is
nfluenced, however, by additional material parameters: the spon-
aneous elastic modulus E0, the spontaneous coefficient of thermal
xpansion �0, the density � and the parameter vector w- which
escribes the couplings between the stress and the internal vari-
bles.

. Frequency-dependent, temperature-induced stresses
nd strains

In order to calculate the frequency-dependent thermal expan-
ion behaviour, a harmonic temperature excitation in the form of
4.5) is assumed and the change in stress is set to zero, i.e. � = 0. For
hese conditions, the constitutive Eqs. (3.23) and (3.25) are solved:

= �0ϑ − �w- · ı (5.1)

˙ = −A--
(
dı+ eϑ

)
(5.2)

In this case, the temperature-induced strain can be represented
s

(t) = �̂ (ω) eiωt. (5.3)

The function �̂(ω) is the complex strain amplitude and the
requency-dependent coefficient of thermal expansion is defined
y the ratio

ˆ(ω) = �̂(ω)

ϑ̂
. (5.4)

The harmonic solution of the evolution Eq. (5.2) is given by (4.6).
simple calculation leads to

ˆ(ω) = �0 − �w- · �̂- p(ω). (5.5)

Inserting the transfer function (4.8) of the internal variables
he following relation for the frequency-dependent coefficient of
hermal expansion is obtained:

ˆ(ω) = �0 + �w- ·
(
iω1 + Ad

)−1
Ae (5.6)

The parameter vector w- describes the coupling between the

tress and the internal variables and the vector e- those between
he temperature and the internal variables. If one of them is zero,
he coefficient of thermal expansion is frequency-independent.

For the computation of the frequency-dependent stress
esponse under constant strain, the temperature excitation (4.5)
a Acta 500 (2010) 76–87 81

is prescribed, the change in strain is set to zero, and the equations
(B.3) and (B.6) in Appendix B yielding

� = E0
(
−�0ϑ + �w- · ı

)
(5.7)

ı̇ = −A--
((
d+ �E0w- ⊗w-

)
ı+ (e− E0�0w- )ϑ

)
(5.8)

are solved. The temperature-induced stress response has the func-
tional form

� (t) = �̂ (ω) eiωt, (5.9)

where �̂ (ω) is the stress amplitude. The frequency-dependent ther-
mal modulus is defined as

�̂(ω) = �̂(ω)

ϑ̂
. (5.10)

The solution of the evolution Eq. (5.8) is given by (4.7) in com-
bination with (4.9). A short calculation leads to

�̂(ω) = E0
(
−�0 + �w- · �̂- v(ω)

)
. (5.11)

Taking the expression of the transfer function (4.9) of the inter-
nal variables into account, the following result for the thermal
modulus is obtained:

�̂(ω)= − E0

(
�0 + �w- ·

(
iω1--

+ A--
(
d+ �E0w- ⊗w-

))−1
A-- (e− E0�0w- )

)
(5.12)

As it can be seen, this coefficient is frequency-independent if the
parameter vector w- is zero, i.e. if there is no coupling between the
mechanical state variables and the internal variables.

6. Frequency-dependent mechanical material behaviour

Now, the isothermal mechanical behaviour for harmonic stress-
and strain-controlled loadings is computed. In the case of a stress-
controlled loading, an excitation with angular frequency � and
stress amplitude �̂ is applied:

�(t) = �̂eiωt (6.1)

The corresponding equations resulting from (3.23) and (3.25)
read as

� = 1
E0
� − �w- · ı, (6.2)

ı̇ = −A--
(
dı+w- �

)
. (6.3)

Since these equations are linear, their stationary responses can
be represented as

�(t) = �̂(ω)eiωt, (6.4)

ı-�(t) = �̂- �(ω)�̂eiωt. (6.5)

Inserting (6.1) and (6.5) into (6.3), the following expression for
the transfer function of the internal variables under stress control
is obtained:

�̂- �(ω) = −
(
iω1 + Ad

)−1
Aw (6.6)

This outcome in combination with relation (6.2) leads to the inter-
mediate result

�̂(ω) =
(

1
E0

− �w- ·��(ω)
)
�̂. (6.7)
Considering the definition of the frequency-dependent complex
compliance

Ĵ(ω) = �̂(ω)
�̂
, (6.8)
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Table 2
Asymptotic properties of the model under harmonic stress and temper-
ature control.

High frequencies Low frequencies

−1
2 A. Lion, J. Peters / Thermoc

he following expression applies:

(ω) = 1
E0

+ �w- ·
(
iω1 + Ad

)−1
Aw (6.9)

As can be noticed, the mathematical structure of the compli-
nce Ĵ(ω) is similar to that of the frequency-dependent specific
eat (4.14) under constant stress.

In order to calculate the complex modulus

ˆ(ω) = �̂(ω)
�̂

(6.10)

nder isothermal strain-controlled conditions, ϑ = 0 is set and a
inusoidal strain excitation with constant amplitude and frequency
s prescribed:

(t) = �̂eiωt (6.11)

The expressions determining the stress response � (t) =
ˆ (ω) eiωt result from (B.3) and (B.6):

= E0
(
�+ �w- · ı

)
(6.12)

˙ = −A--
((
d+ �E0w- ⊗w-

)
ı+ E0w- �

)
(6.13)

Postulating the relation

�(t) = �̂- �(ω)�̂eiωt (6.14)

or the stationary behaviour of the internal variables under strain
ontrol and taking (6.13) into account, the following relation for
he transfer function is obtained:

ˆ
- � (ω) = −E0

(
iω1 + A

(
d+ �E0w- ⊗w-

))−1
Aw (6.15)

This result in combination with (6.12) leads to the stress ampli-
ude

ˆ(ω) = E0
(

1 + �w- ·��(ω)
)
�̂ (6.16)

nd with the definition (6.10) to the following relation for the com-
lex modulus:

ˆ(ω)=E0

(
1 − �E0w- ·

((
iω1 + A

(
d+ �E0w- ⊗w-

))−1
Aw

))
(6.17)

It is frequency-independent if the parameter vector w- is zero,
.e. if no couplings between the internal variables and the stress
xist.

. Discussion

At this stage, the main consequences of the presented con-
titutive approach can be discussed and interpreted. In the case
f harmonic temperature-, stress- or strain-controlled excitations,
he corresponding relations of the responses of the material were
omputed in closed form. In comparison with other approaches
roposed in literature (see, e.g., Refs. [2,29,32] for a “correspon-
ence principle-based” frequency-domain approach) the model
roposed in the current paper is a time-domain formulation. The
dvantage of this approach is that explicit relations for the com-
lex frequency-dependent response functions in combination with
heir dependence on the material parameters are obtained.

.1. Stress- and temperature-controlled processes

If a sinusoidal temperature excitation is prescribed and the

tress perturbation is set to zero the response of the material is
iven by the complex specific heat (7.1) in combination with the
omplex coefficient of thermal expansion (7.2):

ˆp(ω) = cp0 + �ref e ·
(
iω1--

+ A--d--
)−1
A--
e (7.1)
ĉp(∞) = cp0 ĉp(0) = cp0 + �refe · d-- e

�̂(∞) = �0 �̂(0) = �0 + �w- · d−1e

Ĵ(∞) = 1/E0 Ĵ(0) = 1
E0

+ �w- · d−1w

�̂(ω) = �0 + �w- ·
(
iω1 + Ad

)−1
Ae (7.2)

If, on the other hand, a harmonic stress excitation is prescribed
and the temperature change is zero, the response of the material is
determined by the frequency-dependent compliance:

Ĵ(ω) = 1
E0

+ �w- ·
(
iω1 + Ad

)−1
Aw (7.3)

Comparing these relations, comparable structures and fre-
quency dependences are recognised. Using the transfer-matrix
method in combination with the theory of analytic functions, the
following statement was derived in Ref. [32]: if ĉp(ω) − cp0 and
�̂(ω) − �0 are known for all frequencies, then Ĵ (ω) − 1/E0 can be
calculated. In the context of the model developed in the current
paper, this result can be substantiated with the dependence of spe-
cific heat, thermal expansion coefficient and compliance on the
same original set of material parameters which are contained in the
Gibbs free energy and the evolution laws for the internal variables.

The specific heat at constant stress ĉp(ω) is frequency-
dependent only if the temperature-driven term in the evolution
laws of the internal variables is not zero. This term depends on the
material parameter vector e- which describes the coupling between
the temperature and the internal variables in the Gibbs free energy
(3.22). The compliance Ĵ(ω) depends on the frequency only if the
parameter vector w- differs from zero. It describes the coupling
between the stress and the internal variables. But the coefficient
of thermal expansion �̂(ω) depends on the frequency only if both
couplings between internal variables and stress and between inter-
nal variables and temperature do not vanish, i.e. if the necessary
conditions e- /= 0- and w- /= 0- are satisfied. If, on the other hand, a
given material exhibits a frequency-dependent coefficient of ther-
mal expansion like polystyrene [9,10] then e- /= 0- as well as w- /= 0-
must hold for a proper description. As a consequence, both the
compliance and the specific heat are frequency-dependent in the
model. In standard models of linear thermoviscoelasticity [4,22]
the couplings between the internal variables and the temperature
are normally ignored, which corresponds to e- = 0- in the developed
model. Therefore, the specific heat and the coefficient of thermal
expansion exhibit no frequency dependence in those models.

In order to study the asymptotic properties of the response func-
tions (7.1)–(7.3) the following relations which were derived in Ref.
[20] are applied:

lim
ω→0

=
(
iω1--

+ A--d--
)−1
A--

= d--
−1 (7.4)

lim
ω→∞

=
(
iω1--

+ A--d--
)−1
A--

= 0--
(7.5)

A short calculation leads to the low- and high-frequent limits
of the specific heat at constant stress, the coefficient of thermal
expansion and the compliance.

Taking a look at Table 2 and bearing in mind that the matrix
d--

−1 is positive definite, the well-known behaviour that the spe-

cific heat at constant stress reduces when the frequency of the
temperature input increases is observed. With increasing frequen-
cies of the stress excitation, the compliance Ĵ (ω) also decreases
because w- ·

(
d−1w

)
> 0 holds for arbitrary parameter vectors w- .

The asymptotic behaviour of the coefficient of thermal expansion
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s different in the sense, that its high-frequent limit can be equal
o, smaller or larger than its low-frequent limit. This result stems
rom the fact that the bilinear-form w- ·

(
d−1e

)
can be either zero,

ositive or negative.
In order to discuss some consequences of the response func-

ions (7.1)–(7.3) with regard to the Prigogine–Defay ratio (see
ef. [40] for a detailed derivation of this expression), the gener-
lized Cauchy–Schwarz inequality1 is applied to the bilinear-form

- ·
(
d−1e

)
:

w- ·
(
d--

−1e-
))2 ≤

(
w- ·

(
d--

−1w-
))(

e- ·
(
d--

−1e-
))

(7.6)

Relating the expressions for the asymptotic limits of the
esponse functions for low and high frequencies in Table 2 to the
actors in (7.6), the well-known formulation of the so-called linear
rigogine–Defay ratio (see Refs. [34,36,41]) is obtained:

≤
�

(
ĉp (0) − ĉp (∞)

)(
Ĵ (0) − Ĵ (∞)

)
�ref

(
�̂ (0) − �̂ (∞)

)2
(7.7)

In comparison with formulations given in literature, the mass
ensity� occurs in (7.7) since in this paper mass-specific quantities
re used. This inequality makes a statement about the magnitude of
he changes in the response functions of glass-forming materials for
nfinitely small and high frequencies. It contains only the asymp-
otic limits of the response functions, but it is independent on the
requency. For a detailed discussion in this context, the reader is
eferred to Refs. [30,32,34,38]. In Ref. [34], a frequency-dependent
inear dynamic Prigogine–Defay ratio is defined on the basis of the
maginary parts of the response functions. To this end, the decom-
osition of the matrix

(
iω1--

+ A--d--
)−1
A--

=
(
ω21--

+
(
A--
d--

)2
)−1

A--
d--
A--

− iω
(
ω21--

+
(
A--
d--

)2
)−1

A--

= Re
((
iω1--

+ A--d--
)−1
A--

)
− i Im

((
iω1--

+ A--d--
)−1
A--

)
(7.8)

nto real and imaginary parts is needed (see Ref. [20]). In Appendix
, it is shown that both parts of (7.8) are positive definite for ω > 0.
sing this result, the imaginary parts of (7.1)–(7.3) can be com-
uted:

m
(
ĉp

)
= ω�ref e ·

(
ω21--

+
(
A--
d--

)2
)−1

A--
e (7.9)

m
(
�̂
)

= �ωw- ·
(
ω21--

+
(
A--
d--

)2
)−1

Ae (7.10)

m (Ĵ) = �ωw- ·
(
ω21--

+
(
A--
d--

)2
)−1

Aw (7.11)

The application of the Cauchy–Schwarz inequality to the
ilinear-form in (7.10) leads to

w- ·
(
ω21--

+
(
A--
d--

)2
)−1

Ae

)2

≤
(
w- ·

(
ω21--

+
(
A--
d--

)2
)−1

Aw-

)
( ( ) )
× e · ω21--
+

(
A--
d--

)2 −1
Ae

(7.12)

1 The generalized Cauchy–Schwarz inequality applies for positive semidefinite

atrices H--
and vectors x-, y-

/= 0-:
(
x- ·

(
H--
y
-

))2
≤
(
x- ·

(
H--
x-

))(
y
-

·
(
H--
y
-

))
.

a Acta 500 (2010) 76–87 83

and finally to the frequency-dependent linear dynamic
Prigogine–Defay ratio:

1 ≤
�Im

(
ĉp (ω)

)
Im

(
Ĵ (ω)

)
�ref

(
Im

(
�̂ (ω)

))2
(7.13)

The advantages of this frequency-dependent expression are dis-
cussed in detail in Ref. [34]. In this reference, it has been shown, that
only one single internal variable is needed to describe the dynamic
behaviour of the glass-forming material, when the ratio (7.13) is
equal to one.

Since the real part of the matrix (7.8) is also positive definite,
the generalized Cauchy–Schwarz inequality can be applied again:(
w- ·

(
ω21--

+
(
A--
d--

)2
)−1

A--
d--
A--
e

)2

≤
(
w- ·

(
ω21--

+
(
A--
d--

)2
)−1

A--
d--
A--
w-

)

×
(
e ·

(
ω21--

+
(
A--
d--

)2
)−1

A--
d--
A--
e

)

(7.14)

This leads to a different version of a frequency-dependent
Prigogine–Defay ratio:

1 ≤
�Re

(
ĉp (ω) − cp0

)
Re

(
Ĵ (ω) − 1/E0

)
�ref

(
Re

(
�̂ (ω)

)
− �0

)2
(7.15)

7.2. Strain- and temperature-controlled processes

If a harmonic temperature excitation is prescribed and the strain
perturbation is set to zero, the response of the material is deter-
mined by the frequency-dependent specific heat at constant strain
(7.16) in combination with the thermal modulus (7.17):

ĉv(ω) = cp0 − �refE0�2
0

�
+ �ref (e− E0�0w- )

·
(
iω1--

+ A--
(
d+ �E0w- ⊗w-

))−1
A-- (e− E0�0w- ) (7.16)

�̂ (ω) = − E0

(
�0+�w- ·

(
iω1--

+A--
(
d+ �E0w- ⊗w-

))−1
A-- (e− E0�0w- )

)
.

(7.17)

If, on the other hand, a harmonic strain excitation is prescribed
and the temperature change is set to zero, the response of the
material is determined by the complex modulus:

Ê(ω)=E0

(
1−�E0w- ·

((
iω1+A

(
d+ �E0w- ⊗w-

))−1
Aw

))
(7.18)

Taking a look at the specific heat at constant strain (7.16) a
remarkable effect is observed: if there is no direct coupling between
the temperature and the changes in the internal variables, i.e. e- = 0-
is assumed, the specific heat at constant stress ĉp(ω) as speci-
fied in (7.1) becomes frequency-independent, but ĉv (ω) remains
frequency-dependent. In this case, (7.16) leads to

ĉv (ω) =cp0−�refE0�2
0

�
+�refE

2
0�

2
0w- ·

(
iω1--

+A--
(
d+ �E0w- ⊗w-

))−1
A--
w- .
(7.19)

The physical interpretation in the case of e- = 0- in combination
withw- /= 0- is as follows. The harmonic temperature change induces
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scillating stresses if the strain is zero, i.e. if�= 0 is prescribed. Since

- /= 0- is assumed, the coupling between the stress and the inter-
al variables takes place such that the specific heat ĉv (ω) becomes

requency-dependent. Under the same assumption, the coefficient
f thermal expansion (7.2) becomes frequency-independent but
he thermal modulus depends on the frequency. In this case, (7.17)
eads to

ˆ (ω) = −E0

(
�0 − �E0�0w- ·

(
iω1--

+ A--
(
d+ �E0w- ⊗w-

))−1
A--
w-

)
.

(7.20)

Now, for comparison, e- /= 0- and w- = 0- is supposed. In this case,
here is no direct coupling between stress and internal variables
ut a direct coupling between temperature and internal variables.
nder this assumption, (7.18) and (7.3) lead to Ê(ω) = E0 and
(ω) = 1/E0 such that the modulus and the compliance become
requency-independent. From the mechanical point of view, such a

aterial can be characterised as linear elastic. Due to the assump-
ion of w- = 0- the specific heat at constant strain (7.16) remains
requency-dependent:

ˆv (ω) = cp0 − �refE0�2
0

�
+ �ref e ·

(
iω1--

+ A--d
)−1
A--
e (7.21)

Taking a look at (7.1), it is seen that the specific heat at constant
tress is not influenced, i.e. both specific heats exhibit the same
requency dependence in this case.

If e- = 0- andw- = 0- is chosen, no couplings at all occur. Hence the
requency dependence vanishes and the standard expressions of a
inear thermoelastic material are obtained:

ĉp = cp0, ĉv = cp0 − �refE0�2
0

�
, Ĵ = 1

E0
, Ê = E0, �̂ = �0,

�̂ = −E0�0 (7.22)

In the asymptotic cases of low- and high-frequent excitations,
7.4) and (7.5) can be applied in the corresponding sense.

The results for the low- and high-frequent limits of the specific
eat at constant strain, the thermal and the mechanical modulus
re listed in Table 3.

Since x- ·
(
d+ �E0w- ⊗w-

)
x- = x- · dx- + �E0(x- ·w- )2 > 0 holds for

rbitrary vectors x- /= 0-, the inverse matrix
(
d+ �E0w- ⊗w-

)−1
exists

s well and is also positive definite. This property shows that the
echanical modulus reduces as the frequency is reduced. The spe-

ific heat at constant strain also lessens as function of frequency,
ut the thermal modulus can increase or decrease depending on

he sign of the bilinear-form w- ·
(
d+ �E0w- ⊗w-

)−1
(e− E0�0w- ).

The application of the generalized Cauchy–Schwarz inequality
o the frequency-dependent response functions (7.16)–(7.18) for
train- and temperature-controlled processes is also possible and
eads to a different set of Prigogine–Defay ratios similar to (7.7),
7.13) and (7.15). The interested reader is also referred to Ref. [34].

. Conclusions

In this essay, a new constitutive model has been developed to
epresent the dynamic material behaviour of viscoelastic media
n the neighbourhood of the glass transition. In this region, a
requency-dependence of the specific heat, the coefficient of ther-

al expansion and the mechanical material behaviour is observed

s published in literature [8–10,13,16]. The physical reason for this
ype of material behaviour is the fact that the molecular mobility
s influenced by changes in temperature-, strain- or stress. In the
eighbourhood of the glass transition, viscoelastic media are highly
ensitive with respect to mechanical or thermal perturbations. In
a Acta 500 (2010) 76–87

the case of low-frequent stress-, strain- or temperature-controlled
excitations, the molecules follow the excitation, whereas for much
higher frequencies they are frozen. In between the limiting cases,
the molecular motions follow with frequency-dependent ampli-
tudes and phase shifts.

In order to represent these phenomena simultaneously in a
single constitutive approach, the theory of thermodynamics with
internal variables was applied. The Gibbs free energy per unit mass
was taken as thermodynamic potential. It depends on the stress,
the temperature and a set of internal variables in order to describe
the history dependence of the material. In the neighbourhood of the
thermodynamic equilibrium, the Gibbs free energy is represented
by a quadratic approximation in the changes in stress, tempera-
ture and internal variables. The evolution equations for the internal
state variables were formulated taking into account the thermo-
dynamic dissipation principle. As a result of this approach, the
temporal evolution of the internal variables is driven by the changes
in both the temperature and the stress. For the purpose of cal-
culating the frequency-dependent specific heat at constant stress
or strain, the coefficient of thermal expansion, the thermal modu-
lus and the mechanical compliance and modulus, harmonic stress,
strain or temperature excitations were prescribed. Based on the
computed relations, the following statements and interpretations
can be made:

• The frequency-dependent specific heat at constant stress is deter-
mined by the material parameters which express the influence of
the temperature on the evolution of the internal state variables.
These material parameters also describe the coupling between
the temperature and the internal variables in the Gibbs free
energy.

• The frequency-dependent specific heat at constant strain
depends on both the material constants which describe the
influence of the temperature on the internal variables and the
parameters describing the influence of the stress on the internal
variables. Thus, a material whose specific heat at constant stress
is independent on the frequency, i.e. a direct coupling between
the temperature and the internal variables does not occur, can
nevertheless exhibit a frequency-dependent specific heat at con-
stant strain: if the strain is constant, a harmonic temperature
excitation induces a harmonic stress which leads to oscillations
in the internal state variables and, therefore, to a frequency-
dependence of the specific heat at constant strain.

• The coefficient of thermal expansion is frequency-dependent
only if there is at least one internal state variable whose evo-
lution is driven simultaneously by temperature and stress. If,
for a given material, the coefficient of thermal expansion is
frequency-independent, then there are no internal variables or
molecular mechanisms which are driven by both the stress
and the temperature. Nevertheless, such a material can exhibit
frequency-dependent mechanical properties or a frequency-
dependent specific heat. However, if the coefficient of thermal
expansion of a given material depends on the frequency, this
material shows both frequency-dependent mechanical proper-
ties and a frequency-dependent specific heat at constant stress.

• The thermal modulus depends on the frequency, if the stress
influences the internal variables, i.e. when the material is vis-
coelastic from the mechanical point of view.

• Both quantities the complex modulus and the compliance
depend on the frequency of the corresponding mechanical exci-
tation if the coupling parameters between the strain and the

stress, respectively, and the internal state variables do not
vanish.

• Frequency-dependent formulations of the Prigogine–Defay ratio
as originally proposed in Ref. [34] can be derived from the
constitutive approach presented here as well. In addition, a mod-
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Table 3
Asymptotic properties of the model under harmonic strain and temperature control.

High frequencies Low frequencies

ĉv(∞) = cp0 − (�refE0�2
0/�) ĉv(0) = cp0 − �refE0�

2
0

� + �ref

(
e− E0�0w-

)
·
(
d+ �E0w- ⊗w-

)−1 (
e− E0�0w-

)
�̂(∞) = −E0�0 �̂(0) = −E0

(
�0 + �w- ·

(
d+ �E0w- ⊗w-

)−1 (
e− E0�0w-

))

0
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Ê(∞) = E0 Ê(0) = E

ification of the Prigogine–Defay ratio connecting the real parts of
the response functions has been formulated.

For the experimental validation of the proposed theory and its
onsequences, it is necessary to consider one and the same material,
o measure the frequency-dependence of specific heat at constant
tress, the thermal expansion behaviour and the dynamic modu-
us or compliance in the neighbourhood of the glass transition and
o identify the material constants. In a recent article, published in
008, Pedersen et al. [41], remark in this context: “Unfortunately,
he relevant frequency-dependent thermoviscoelastic response
unctions are difficult to measure - in fact, no reliable measure-

ents appear yet to exist”.
In order to reduce the arithmetic formalism and to work out

he main physical ideas, the proposed model considers only one-
imensional states of stress and strain so far. But in the near future,
he approach will be generalized to develop a three-dimensional
heory, in which tensorial states of stress and strain can be taken
nto account.
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ppendix A. Equations of heat conduction formulated with
he Gibbs and Helmholtz free energies

Computing the time derivatives of (2.7) and (2.8)

˙ = ∂ 

∂E
· Ė + ∂ 

∂�
�̇ + ∂ 

∂˛
· f̃ , (A.1)

˙ = ∂g

∂T
· Ṫ + ∂g

∂�
�̇ + ∂g

∂˛
· f , (A.2)

nd inserting them into the Clausius–Duhem inequalities (2.5) and
2.6) leads to

T − �∂ 
∂E

)
· Ė − �

(
s+ ∂ 

∂�

)
�̇ − �∂ 

∂˛
· f̃ − �q · grad(�)

�
≥ 0 (A.3)

nd(
E + �∂g

∂T

)
· Ṫ − �

(
s+ ∂g

∂�

)
�̇ − � ∂g

∂˛
· f − �q · grad(�)

�
≥ 0. (A.4)

These inequalities have to be satisfied for arbitrary values of Ė or
˙ and �̇. As a result, the following potential relations for the strain
nd stress tensors and the entropy are obtained:
(

T, �, -̨
)

= −�∂g
∂T

(A.5)

(
E, �, -̨

)
= �∂ 

∂E
(A.6)
�E0w- ·
(
d+ �E0w- ⊗w-

)−1
w

)

s
(

T, �, -̨
)

= −∂g
∂�

(A.7)

s
(

E, �, -̨
)

= −∂ 
∂�

(A.8)

The corresponding residual inequalities have to be satisfied by
the constitutive equation for the heat flux vector �qand the evolution
equations for the internal variables:

−� ∂g
∂˛

· f − �q · grad(�)
�

≥ 0 (A.9)

−�∂ 
∂˛

· f̃ − �q · grad(�)
�

≥ 0 (A.10)

In this essay, it is assumed that the Gibbs and Helmholtz free
energies are independent on the temperature gradient. If, in this
case, a homogeneous process with grad(�) = �0 is prescribed, the
inequalities (A.9) and (A.10) lead to

−� ∂g
∂˛

· f ≥ 0, (A.11)

−�∂ 
∂˛

· f̃ ≥ 0. (A.12)

This result shows that the entropy production of the internal
variables alone has to be non-negative [22]. Taking (A.1) and (A.2)
and the potential relations (A.5)–(A.8) into account, the time rates
of the Gibbs and Helmholtz free energies can be reformulated:

�ġ = −E · Ṫ − �s�̇ + � ∂g
∂˛

· f (A.13)

� ̇ = T · Ė − �s�̇ + �∂ 
∂˛

· f̃ (A.14)

Inserting these expressions in combination with (A.7) and (A.8)
into the corresponding form of the first law of thermodynamics
(2.3) or (2.4), the formulations

�
∂ 

∂˛
· f̃ = � � d

dt

(
∂ 

∂�

)
− div

(�q
)

+ �r, (A.15)

�
∂g

∂˛
· f = � � d

dt

(
∂g

∂�

)
− div

(�q
)

+ �r, (A.16)

are obtained. Calculating the time derivatives

d

dt

(
∂ 

∂�

)
= ∂ 2 

∂�∂E
· Ė + ∂ 2 

∂�2
�̇ + ∂2 

∂�∂˛
· f̃ , (A.17)

d

dt

(
∂g

∂�

)
= ∂ 2g

∂�∂T
· Ṫ + ∂ 2g

∂�2
�̇ + ∂2g

∂�∂˛
· f , (A.18)

inserting them into (A.15) and (A.16) and rearranging the terms

finally leads to

−�� ∂
2 

∂�2
�̇ + �

(
∂ 

∂ -̨
− � ∂

2 

∂�∂ -̨

)
· f̃
-

= �� ∂
2 

∂�∂E
· Ė − div

(�q
)

+ �r,
(A.19)
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��
∂ 2g

∂�2
�̇ + �

(
∂g

∂ -̨
− � ∂

2g

∂�∂ -̨

)
· f
-

= �� ∂
2g

∂�∂T
· Ṫ − div

(�q
)

+ �r.
(A.20)

These relations are two equivalent formulations of the equation
f heat conduction such that the factors of the temperature rate can
e interpreted as specific heat at constant stress

�
∂ 2g

∂�2
= cp

(
T, �, -̨

)
(A.21)

nd as specific heat at constant deformation (cf. [22])

�
∂ 2 

∂�2
= cv

(
E, �, -̨

)
. (A.22)

ppendix B. Formulation of the constitutive model with
he Helmholtz free energy

The Helmholtz free energy, can be obtained from the Legendre
ransformation (2.2) as

= g + 1
�
�ε = g + 1

�
(�ref + �) (εref + �) (B.1)

The stress perturbation � is expressed using (3.23). With (3.22)
short calculation leads to the following expression for the

elmholtz free energy2:

 = gref + �ref εref

�
− srefϑ − 1

2�ref

(
cp0 − �refE0�2

0
�

)
ϑ2

+ 1
2

((
d+ �E0w- ⊗w-

)
ı
)

· ı+ �ref

�
�+ (e− E0�0w- ) · ıϑ

+ E0

2�
�2 − E0�0

�
�ϑ + E0w- · ı� (B.2)

Its equilibrium value is ref = gref + �refεref/�. Using the poten-
ial relations for the stress and the entropy listed on the left-hand
ide of Table 1 in combination with (3.5) and (3.7) the following
quations are obtained:

tress : �
(
�,ϑ, ı

)
= E0

(
�− �0ϑ + �w- · ı

)
(B.3)

ntropy : 

(
�,ϑ, ı-

)
= 1
�ref

(
cp0 − �refE0�2

0
�

)
ϑ − (e− E0�0w- ) · ı

+ E0�0

�
� (B.4)

Comparing the expression (3.23) for the strain with (B.3) deter-
ining the stress, it can be recognised that both are equal.

onsidering this and comparing the relations for the entropy (B.4)
nd (3.24) they are also equal. The specific heat at constant strain
s calculated using

v
(
�,ϑ, ı

)
= −

(
�ref + ϑ

) ∂2 

∂ϑ2
=

(
1 + ϑ

�ref

)(
cp0 − �refE0�2

0
�

)
.(B.
The corresponding evolution law for the changes in the internal
tate variables is obtained by inserting (B.3) into (3.25):

˙ = −A--
((
d+ �E0w- ⊗w-

)
ı+ (e− E0�0w- )ϑ + E0w- �

)
(B.6)

2 The dyadic product in the form of
(
w- · ı-

)2
=

((
w- · ı-

)
w-

)
· ı- =

(
(w- ⊗w- ) ı-

)
· ı-

as been used.
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Now, some substitutions in the Helmholtz free energy and the
evolution laws for the internal variables are introduced such that
the form of the representation becomes similar to the form of the
representation with the Gibbs free energy:

 =  ref − srefϑ − cv0

2�ref
ϑ2 +

(
d̃ı

)
· ı

2
+ �ref

�
�+ ẽ · ıϑ + E0�2

2�

− E0�0

�
�ϑ + E0w- · ı�

(B.7)

ı̇ = −A--
(
d̃ı+ ẽϑ + E0w- �

)
(B.8)

cv0 = cp0 − �refE0�2
0

�
(B.9)

d̃ = d+ �E0w- ⊗w- (B.10)

ẽ = e− E0�0w- (B.11)

In this formulation, the changes in stress and entropy and the
rates of the internal variables are linear functions of the changes in
strain, temperature and internal variables.

Appendix C. Evaluation of the heat conduction equations
for prescribed temperature processes

Following Ref. [20], space-independent conditions are pos-
tulated and it is assumed that the temperature history of a
homogeneous specimen of the mass �m =��V is prescribed. The
absorbed or emitted heat power PDSC which is required to realise
the temperature history can be calculated by evaluating the balance
equation of energy (see [24]). Considering the Gaussian theorem of
integration, the terms on the right-hand side of (4.1) and (4.2) are
equal to the heat power per unit mass PDSC/�m which is supplied
to the specimen over its surface.

− 1
�

div
(�q

)
= −

�Vdiv
(�q

)
�m

= −1
�m

∫
�V

div
(�q

)
dV = −1

�m

∫
�V

�q · �ndA

= PDSC

�m
(C.1)

Now, the free energies are differentiated with respect to tem-
perature and internal variables. To this end, � = 0 is assumed in the
case of (3.22) and�= 0 in the case of (B.7). Using (3.22), (3.25), (B.7)
and (B.8) the following results are obtained:(
∂g

∂ı
−

(
�ref + ϑ

) ∂ 2g

∂ϑ∂ı

)
· ı̇ = −ı ·

[(
dAd

)
ı
]

− ı ·
[(
dA

)
e
]
ϑ

+ �ref e ·
(
Ae

)
ϑ + �ref e ·

[(
Ad

)
ı
]

(C.2)

(
∂ 

∂ı
−

(
�ref + ϑ

) ∂ 2 

∂ϑ∂ı

)
· ı̇ = −ı ·

[(
d̃Ad̃

)
ı
]

− ı ·
[(
d̃A

)
ẽ
]
ϑ

+ �ref ẽ ·
(
Aẽ

)
ϑ + �ref ẽ ·

[(
Ad̃

)
ı
]

(C.3)
Calculating the second derivatives of and g with respect to the
temperature change,

−
(
�ref + ϑ

) ∂ 2g

∂ϑ2
=

(
1 + ϑ

�ref

)
cp0, (C.4)
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(
�ref + ϑ

) ∂ 2 

∂ϑ2
=

(
1 + ϑ

�ref

)
cv0, (C.5)

nd inserting all these expressions into (4.1) and (4.2), the following
elations are obtained:

Constant stress : cp0ϑ̇ + �ref e ·
(
A
(
eϑ + dı

))
+ cp0

ϑ

�ref
ϑ̇

− ı ·
(
dA

(
dı+ eϑ

))
= PDSC (t)

�m
(C.6)

Constant strain : cv0ϑ̇ + �ref ẽ ·
(
A
(
ẽϑ + d̃ı

))
+ cv0

ϑ

�ref
ϑ̇

− ı ·
(
d̃A

(
d̃ı+ ẽϑ

))
= PDSC (t)

�m
(C.7)

ppendix D. Positive definiteness of matrices

In order to prove that the matrix

--
=

(
ω21--

+
(
A--
d--

)2
)−1

A--
(D.1)

s positive definite its inverse

--
−1 = A--

−1
(
ω21--

+
(
A--
d--

)2
)

= ω2A--
−1 + d--A--d-- (D.2)

s considered and its positive definiteness is demonstrated. Since
he matrices A and d are positive definite and symmetric, their
nverses exist as well and are also symmetric and positive defi-
ite. Thus, the following relation holds for arbitrary column vectors
/= 0:

x- ·
(
B--

−1x-
)

= ω2x- · A--
−1x- + x- ·

(
d--
A--
d--
x-
)

= ω2x- · A--
−1x-︸ ︷︷ ︸

>0

+
(
d--
x-
)

· A--
(
d--
x-
)

︸ ︷︷ ︸
>0

> 0 (D.3)

Since B−1 is positive definite the matrix B defined in (D.1) is
lso positive definite. Thus, the imaginary part of (7.8) is positive
efinite for ω > 0 and positive semi-definite for ω≥ 0.

In order to show the positive definiteness of the matrix

--
=

(
ω21--

+
(
A--
d--

)2
)−1

A--
d--
A--
, (D.4)

ts inverse is considered:

--
−1 =

(
A--
d--
A--

)−1
(
ω21--

+
(
A--
d--

)2
)

= ω2A--
−1d--

−1A--
−1 + d-- (D.5)

Assuming an arbitrary vector x /= 0, the relation

x · C−1x = ω2x · A−1d−1A−1x + x · dx = ω2
(
A−1x

)
· d−1 (

A−1x
)

- -- - - -- -- -- - - --- -- - -- -- -︸ ︷︷ ︸
>0

+ x- · d--x-︸︷︷︸
>0

> 0 (D.6)

[
[
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holds and demonstrates the positive definiteness of C−1 and
also that of the matrix C defined in (D.4).
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