
N

V
a

b

a

A
R
R
A
A

K
T
N
M
W

1

t
o
t
s
a
[
C
c
t
c
[

t
m
c
p
W

(

0
d

Thermochimica Acta 507–508 (2010) 35–44

Contents lists available at ScienceDirect

Thermochimica Acta

journa l homepage: www.e lsev ier .com/ locate / tca

ew thermodynamic assessment of nickel–tin solid and liquid alloys

assili P. Glibina,∗, Tatyana N. Vorobyovab, Boris V. Kuznetsovb

Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B9, Canada
Department of Chemistry, Belarusian State University, 14 Leningradskaya St., Minsk, 220050, Belarus

r t i c l e i n f o

rticle history:
eceived 15 February 2010
eceived in revised form 30 April 2010
ccepted 30 April 2010
vailable online 10 May 2010

eywords:
hermodynamics
ickel–tin alloys
odified quasi-chemical model

a b s t r a c t

Standard enthalpies of formation, �fH◦(298.15), entropies, S◦(298.15), and molar heat capacities,
C

◦
p,m(298.15), for a number of phases of Ni–Sn system have been estimated by graphical and analytical

methods. The �fH◦(298.15), S◦(298.15) and C
◦
p,m(298.15) values of a new metastable NiSn9 compound

were found equal to −85.0 ± 5 kJ mol−1, 420.7 ± 5 J K−1 mol−1 and 228 J K−1 mol−1, respectively. New,
reassessed value of �fH◦(298.15) for metastable NiSn was obtained equal to −54.0 ± 4 kJ mol−1. The
limiting partial enthalpies of Ni in solid Sn (H̄lim(Ni) = −3 ± 1 kJ mol−1) and Sn in solid Ni (H̄lim(Sn) =
−49 ± 4 kJ mol−1) at 298.15 K were determined by graphical method. The calculated C

◦
p,m(298.15) values

of NiSn and Ni3Sn4 are equal 45.1 J K−1 mol−1 and 160.3 J K−1 mol−1, respectively. Using different methods,
the standard entropy values S◦(298.15) (NiSn) = 71.7 ± 2 and S◦(298.15) (Ni3Sn4) = 256.4 ± 5 J K−1 mol−1
ilson’s model were calculated. It has been shown that the combined approach based on a modified quasi-chemical
model and the Tsuboka–Katayama–Wilson’s equations reproduce with good approximation the experi-
mental data on the thermodynamic functions of mixing for liquid Ni–Sn alloys. This method takes into
consideration the effects of the short range ordering and the temperature on the thermodynamic func-
tions of mixing, and has the advantage that prior knowledge of experimental values of mixing quantities
is not required. The extension of this approach to the binary systems, where volume effect is inherent, is

motivated.

. Introduction

Thermodynamic modeling of alloy systems is needed for
he interpretation and prediction of metastable phase formation
btained by rapid solidification and mechanical alloying. By elec-
rodeposition it is also possible to obtain alloy phases of metastable
tructure; however, these phases may differ considerably from
lloys of the same composition obtained by metallurgical methods
1–12]. Particularly, the electroplated Ni–Sn coatings together with
u–Ni and Cu–Sn analogues are of an especial scientific and practi-
al interest when possessing thermodynamic properties identical
o their metallurgical alloys [1–5,11,12]. Another practical appli-
ation is linked to the soldering technology for microelectronics
13,14].

The enthalpy of formation is the most important among the
hermodynamic constants which can be derived from theoretical
odels of intermetallic compounds. This thermodynamic constant
an be derived from the cohesive energies of the considered com-
ound and its constituent elements. Using a tight binding model,
atson and Bennett [15] and Colinet et al. [16] proposed methods

∗ Corresponding author. Tel.: +1 519 661 2111x88237; fax: +1 519 661 3498.
E-mail addresses: vglibin@yahoo.ca, vglibin@uwo.ca (V.P. Glibin), vorob@bsu.by
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© 2010 Elsevier B.V. All rights reserved.

for predictions of the enthalpies of formation of disordered binary
alloys of transition metals. In addition, more sophisticated methods
based on the calculation of the energies of formation of perfectly
ordered compounds, applicable to a large variety of alloys, are used
[17–19]. The properties at non zero temperature are obtained by
the cluster variation method [18] to treat the ordering effects with
introduction of vibrational, relaxation and elastic contributions, if
it is necessary.

The field of molten alloys has been less studied, presumably
due to higher complexity of the liquid alloys structure compared to
intermetallic compounds. In numerous liquid alloys the presence of
strong short range order has often been quoted. The most popular
interpretation of the thermodynamic data in systems which display
a strong non-ideal mixing behavior consists in assuming the exis-
tence of chemical complexes or associates. Extensive work using
such assumptions has been done for the modeling of the enthalpy
of mixing in all kinds of alloys: simple metal alloys, transition metal
alloys, d metal – sp metal alloys, and in semi metal alloys [20–28].
However, direct evidence of the existence and the form of such
associates in liquid alloys is still lacking.
The purpose of this work was to broaden and specify data on
thermodynamic constants of intermetallic phases formed in the
Ni–Sn system via metallurgical and electrodeposition methods and
develop a combined approach of modified quasi-chemical and the
Tsuboka–Katayama–Wilson models for prediction of the thermo-
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mailto:vglibin@yahoo.ca
mailto:vglibin@uwo.ca
mailto:vorob@bsu.by
mailto:boris_1979@rambler.ru
dx.doi.org/10.1016/j.tca.2010.04.026


3 imica A

d
u
h

2

2

n
p
d
b
T
i
i
N
1
1
l
t
a
t
[
b
T
b
b
r

d
p
p
i
e
p
c
p

F
S

6 V.P. Glibin et al. / Thermoch

ynamic mixing quantities of liquid alloys. The Ni–Sn system was
sed as an example of a specific system where the end-members
ave a large difference in molar volumes.

. Solid alloys

.1. Literature data

Hultgren et al. [29] and later Nash and Nash [30], taking the
umerous literature data, have constructed an assessed Ni–Sn
hase diagram. Further thermodynamic assessments and phase
iagram calculations using CALPHAD procedure were published
y Kattner [14], Nash et al. [31], Ghosh [32] and Liu et al. [33].
he Ni–Sn diagram revised according to the results of the exper-
mental investigation was reported in [13]. The presence of three
ntermediate phases Ni3Sn, Ni3Sn2 and Ni3Sn4 was established.
i3Sn, Ni3Sn2 melt congruently at temperature around 1462 K and
553 K, respectively, and Ni3Sn4 forms by a peritectic reaction at
071 K [13]. Ni3Sn and Ni3Sn2 exist under two crystalline forms:

ow-temperature (�-) and high-temperature (�-) forms. The high-
emperature �-form of Ni3Sn is stable between 1220 K and 1462 K
nd the low-temperature �-form is stable below 1184 K [13].The
ransformation of �-Ni3Sn to �-Ni3Sn is of the order–disorder type
34]. There are also two forms of Ni3Sn2: the �-Ni3Sn2 is stable
etween 781 K and 1553 K, the �-Ni3Sn2 is stable below 781 K [13].
he standard enthalpies of formation were determined for a num-
er of equilibrium intermetallic compounds in the system Ni–Sn
y means of solution calorimetry in liquid tin [13,35–37] and direct
eaction calorimetry [38].

The Ni–Sn alloys obtained by electrodeposition had significant
ifferences with respect to equilibrium structure [1–4,6–10]. The
resence of the following phases was established in electrode-
osited alloys: fcc solid solution within values of the Sn solubility
n the range of 10–18 at.% compared to 0–10.6 at.% Sn [1,10] in the
quilibrium system; a metastable NiSn with NiAs type of structure,
resent in a wide range of Ni fraction with respect to the equiatomic
omposition [6–8,10]; a phase identified with the equilibrium com-
ound Ni3Sn4, which could be obtained as a single phase in the

ig. 1. Enthalpy diagram of the Ni–Sn system at 298.15 K. (1) Dependence of the enthalp
n. (2) Dependence of the enthalpies of formation of Ni–Sn alloys, referred to mole of Sn
cta 507–508 (2010) 35–44

concentration range 60–75 at.% Sn [1,10]; a new metastable phase
of composition close to NiSn9 observed in multiphase Sn–Ni elec-
trodeposits in the concentration range 3–34 at.% Ni [9]; and a
bct-Sn with negligible Ni solubility [1,10]. The enthalpies of for-
mation of Ni–Sn electrodeposits were measured in [6,12] using
solution calorimetry (with aqueous solvent). A single phase elec-
trodeposit compositions obtained between 47.5 at.% and 60.3 at.%
Ni had enthalpies of formation at 298 K best represented as lin-
ear function of the Ni content. The interpolation from these results
to the equiatomic composition (NiSn) yields −58 ± 4 kJ mol−1. It
was established that NiSn electrodeposit decomposes slowly above
575 K with formation of Ni3Sn2 and Ni3Sn4 [6–8]. Accordingly to
Schwitzgebel’s et al. [8] the question whether NiSn is metastable
composition outside the equilibrium range of Ni3Sn2 (Ni vacancies
or Sn substitutions) or merely a quenched like form of Ni3Sn2 in its
normal composition range, is still open. The high-tin NiSn9 phase
decomposes at 373 K into bct-Sn and Ni3Sn4 [9].

2.2. Estimation of thermodynamic constants of the intermetallic
phases in Ni–Sn system at 298 K

The values of the partial enthalpy of nickel dissolution in solid
tin, H̄lim(Ni) and the partial enthalpy of tin dissolution in solid nickel
at infinite dilution, H̄lim(Sn), were found (Fig. 1) by extrapolation
to the molar (atomic) fractions XNi = 0 and XSn = 0 of the plots of
enthalpy of alloys formation (referred to mole of Ni or Sn atoms)
versus molar fraction of the tin. To construct the diagram the val-
ues of standard enthalpies of formation of NiSn, Ni3Sn, Ni3Sn2 and
Ni3Sn4 reported (Table 1) in literature [6–8,12,13,35–38] and ref-
erence books [29,39,40] were used. Thus, we estimated the H̄lim Sn
in solid nickel at 298 K is equal to −49 ± 4 kJ mol−1. This value is in a
good agreement with H̄lim (Sn) = −47.4 kJ mol−1, obtained in [6]. For
nickel dissolution in solid tin H̄lim (Ni) is equal to −3 ± 1 kJ mol−1.

This value is significantly different from H̄lim (Ni) = −11.6 kJ mol−1

reported in [6] but our value is more realistic due to practi-
cally no solubility of Ni in bct-Sn. The value of standard enthalpy
of NiSn formation, �fH◦(298.15), was reassessed and value of
�fH◦(298.15) (NiSn9) compound was estimated with the help of

ies of formation of Ni–Sn alloys, referred to mole of Ni atoms, on molar fraction of
atoms, on molar fraction of Sn.
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Table 1
Thermodynamic constants of the intermetallic compounds in Ni–Sn system.

Phase �fH◦(298.15) (kJ mol−1) S◦(298.15) (J K−1 mol−1) C
◦
p,m(298.15) (J K−1 mol−1)

fcc-Ni 0 29.87 ± 0.08 [29,39,40] 26.07 [29,39,40]
bct-Sn 0 51.55 ± 0.33 [29,39,40] 26.99 [29,39,40]
�-Ni3Sn −110.1 ± 1.2 [35] 131.4 [40] 99.7 [40]

−93.7 [40]
−99.6 ± 1 [13,37]

�-Ni3Sn −91.0 ± 2.4 [38] (at 1332 K) – –
�-Ni3Sn2 −156.9 [39,40] 173.6 [39,40] 108.7 [39,40]

−158.9 ± 3.2 [35]

�-Ni3Sn2 −173.0 ± 1 [13,37] – –
−155 ± 1.4 [29]
−173.0 ± 5 [36]

NiSn (electrodeposit) −58 ± 3.4 [6] – –
−54.4 ± 1.5 [7]
−57.0 ± 3.2 [12]

a
t
t
T
b
f
n
p
t
�
a
e
T
t
c

c
f

Ni3Sn4 −177.3 ± 3.9 [35,40]
−205.4 [36]
−168.0 ± 1 [13,37]

diagram showed in Fig. 2. It represents enthalpies of forma-
ion of the metastable Ni–Sn alloys (dotted line) superimposed
o the enthalpies of formation of stable Ni–Sn alloys (solid line).
he solid alloys in the range of compositions of XSn > 0.75 could
e metastable due to a restricted number of electrons transferred
rom Sn to Ni [41]. Higher tin concentrations do not change the
umber of electrons accepted by Ni. As it is seen from Fig. 2, the
oints for metastable Ni0.5Sn0.5 and Ni0.2Sn0.8 alloys are well fit-
ed by the line connecting H̄lim (Ni) and H̄lim (Sn). The value of

fH◦(298.15) (Ni0.2Sn0.8) was taken from [35]. Therefore, with the
ssumption that the point for Ni0.1Sn0.9 is on the same line, it is
asy to find �fH◦(298.15) (Ni0.1Sn0.9) equal to −8.5 ± 1 kJ mol−1.
he reassessed value of �fH◦(298.15) for the Ni0.5Sn0.5 alloy is equal

o −27 ± 2 kJ mol−1; this value is in a good agreement with recent
alorimetric measurement (−28.5 ± 1.6 kJ mol−1) [12].

Calculations of the standard entropy of Ni3Sn4, NiSn и NiSn9
ompounds were carried out by Kireev’s method [42], the modified
ormula of Hertz [43] and on the base of the temperature of decom-

Fig. 2. Enthalpies of formation of the metastable Ni–Sn alloy (dotted line) superim
257.7 [40] –

position (disproportion) of metastable NiSn9. Kireev’s method is
based on the fact that entropy changes during reactions of the
compounds formation of the same type from elements in standard
state, �fS◦(298.15), and reduced to the number of atoms in the
compounds (m), is approximately constant:(

1
m

)
�f S

◦
(298.15) = k1 (1)

Then at 298.15 K,

S
◦
(NixSny) = xSo(Ni) + ySo(Sn) + (x + y)k1 (2)

The analogous correlation is also correct for the heat capacity
when NixSny compounds are formed from the elements in standard

state:(

1
m

)
�f C

◦
p,m = k2 (3)

C
◦
p,m(NixSny) = xC

◦
p,m(Ni) + y C

◦
p,m(Sn) + (x + y)k2 (4)

posed to the enthalpies of formation of the stable Ni–Sn alloys (solid line).
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Table 2
Standard molar heat capacity and standard entropy of the intermetallic compounds in Ni–Sn system.

Compound C
◦
p,m(298.15) (J K−1 mol−1) Tdec (K) S◦(298.15) (J K−1 mol−1)

Equations: Adopted value

(2) (5) (10)

NiSn 45.1a 575 72.5 70.8 – 71.7 ± 2
NiSn9 228.0a 373 419.6 384.3 421.8 420.7 ± 5
�-Ni3Sn 99.60c – – – – 131.38c

�-Ni3Sn2 108.67c – – – – 173.64c

Ni Sn 160.3a 1067b 260.9 251.9 – 256.4 ± 5

S

w
w
b

r
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o
H

�
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�

t

�

F
c

3 4

a Eq. (4).
b Incongruent melting.
c [39,40].

Hertz’s formula has the following form:

◦
(298.15) = kH

(
M

C
◦
p,m(298.15)

)1/3

m (5)

here kH, M, C
◦
p,m(298.15) and m are the Hertz constant, the molar

eight of a compound, the heat capacity at 298.15 K and the num-
er of atoms in the compound, respectively.

The NiSn9 compound decomposes according to the following
eaction [9]:

NiSn9 = Ni3Sn4 + 23Sn (6)

At the temperature of decomposition (Tdec = 373 K) the change
f the Gibbs energy for reaction (6) can be accepted equal to zero.
ence:

rG
◦
(T) = �rH

◦
(298.15) − T�rS

◦
(298.15) = 0 (7)

nd at T = 373 K

rS
◦ = �rH

◦
(8)
T

In turn, the change of the entropy for reaction (6) at standard
emperature is obtained using the following equation:

rS
◦ = S

◦
(Ni3Sn4) + 23S

◦
(Sn) − 3S

◦
(NiSn9) (9)

ig. 3. Reduced standard entropy, (1/m) S◦(298.15), of intermetallic compounds in the
ompounds; (2) stable compounds.
From Eq. (9) the standard entropy of NiSn9 is given as:

S
◦
(NiSn9) = 1/3[S

◦
(Ni3Sn4) + 23S

◦
(Sn) − �rS

◦
] (10)

Using the data from Table 1 the values of k1, k2 и kH were
obtained equal to −0.75, −3.00 J K−1 mol−1 and 22.56, respectively.
The results for NiSn, Ni3Sn4 and NiSn9 heat capacity and entropy
calculations are presented in Table 2.

The heat capacity of NiSn, Ni3Sn4 and NiSn9 was estimated
with an error of approximately 5%. For NiSn and Ni3Sn4 the results
of entropy calculation from the different methods are satisfac-
torily consistent with each other. Note that the calculated value
of the Ni3Sn4 entropy is also in an agreement with the value
257.7 J K−1 mol−1 given in [40]. In the case of NiSn9 there is no con-
sistency between the value obtained by the Hertz’s formula and
those calculated by Eq. (10). It is reasonable to consider the value
S◦(298.15) (NiSn9) = 384.3 J K−1 mol−1 as a magnitude referred to
the hypothetical stable modification of NiSn9 since the constants
k1, k2 and kH were deduced from the data for the stable phases
of Ni–Sn system. An argument in favor of this suggestion is the

relationship between the reduced entropy of the nickel intermetal-
lic compounds, (1/m)S

◦
(298.15), and the number (m) of tin atoms

(Fig. 3). Fig. 3 illustrates that the value (1/m)So(298.15) (NiSn9),
obtained by extrapolation to m = 10, practically coincides with the
same value which was found with the help of Hertz’s formula.

Ni–Sn system versus the number of atoms (m) in the compound. (1) Metastable
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Fig. 4. Dependence of the Gibbs energy of formation

To understand the general behavior of the Ni–Sn system, the
iagrams of the Gibbs energy of formation versus composition can
e used. The calculations of the Gibbs energy of formation from
olid Ni and Sn for intermetallic phases (per one mole of alloy) were
erformed using the data in Tables 1 and 2 by following well-known
quation of thermodynamics:

f G
◦
(T) = �f H

◦
(298.15) − T�rS

◦
(298.15) (11)

fG◦(T), �fH◦(298.15) and �rS◦(298.15) correspond formally to the
ixing quantities of stoichiometric alloys in solid state at T = 298 K.

he dependence of the Gibbs energy of the solid alloys versus the
olar fraction of Sn is shown in Fig. 4.
The phases located in the region of XSn > 0.75 are thermodynam-

cally unstable, in accordance to the rule of the tangent lines [44]
hich describes the phase-coexistence conditions. It is obvious that

uch behavior could be connected with the gradually growing influ-
nce of the so-called volume (size) effect. The molar volumes of
etallic nickel and tin have a large difference [45] and are equal to

.60 and 16.30 cm3 mol−1, respectively.

. Liquid alloys

The combined approach of the modified quasi-chemical and the
ilson–Tsuboka–Katayama models [46] was used to predict ther-
odynamic properties of the Ni–Sn liquid alloys in this work. There

re different modifications [47–51] of the original quasi-chemical
uggenheim model [52]. Note that the CALPHAD approach has been
sed earlier [31–33] to develop the thermodynamic description of
he liquid Ni–Sn alloys.

.1. Modified quasi-chemical model

The modified quasi-chemical model differs from that of Guggen-
eim [52] by introducing the composition dependence on effective

oordination number of atoms [48] and in accordance with the work
f Blander and Pelton [49] we replace the mole fraction by the equiv-
lent fraction. The latter takes into account the shift in the maximum
f short range ordering from 0.5 mole fraction and this ordering is
enerally attributed to the formation of the most stable associates.
alloys in Ni–Sn system at 298 K on tin molar fraction.

The total excess of the entropy of mixing includes configuration
and non-configuration contributions, and it depends on the degree
of ordering in the melts [49–51]. However, in order to simplify the
formalism, we have determined the excess entropy of mixing indi-
rectly using the correlation between the excess enthalpy and the
entropy of mixing in accordance with the work of Kubaschewski
[53].

A binary system with components ‘1’ and ‘2’ in which ‘1’ and
‘2’ particles are mixed by the way of substitution in a quasi-
lattice is examined by the quasi-chemical theory [47–52,54–56].
The amounts of 1–1, 2–2 and 1–2 types of pairs formed by the near-
est neighbors are determined by the value of the so-called energy
of interchange, associated with the formation of two 1–2 pairs from
1–1 and 2–2 pairs, according to the following quasi-chemical reac-
tion:

[1–1] + [2–2] = 2[1–2] (12)

The constant of the reaction, which corresponds to the chemical
equilibrium between the pairs of the bound atoms in Eq. (12), can
be written in quasi-chemical approximation as:

k(12) = exp
(−�rG

RT

)
= 4 exp

(
2ω

RT

)
(13)

Here, �rG, ω, R and T are the Gibbs energy of the reaction, the
interchange energy of the reaction, the universal gas constant, and
the absolute temperature, respectively. The enthalpy of mixing,
�mH, and coefficient of activity, � i, of the end-member components
are determined by the following equations [47,52,54–56]:

�mH = −X∗Q = −X∗Zω = −2Qx1x2

1 + ˇ
(14)

�i =
(

xi − X∗ )z/2

=
[

ˇ − 1 + 2xi

]z/2

(15)

x2

i
xi(ˇ + 1)

Here, X*, xi, and Z are the molar fraction of the 1–2 pairs, the
equivalent molar fraction of the end-member component i, and
the effective coordination number; Q and ˇ are parameters. The
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xpression for X* follows:

∗ = 2x1x2

1 + ˇ
(16)

The equivalent fractions are defined as:

1 = b1X1

b1X1 + b2X2
(17)

2 = b2X1

b1X1 + b2X2
(18)

here X1 and X2 are molar fractions of the components 1 and 2; b1
nd b2 are the numbers chosen such that x1 = x2 = 0.5 at the compo-
ition of the maximum ordering [49–51]. According to Lupis [48] it
s convenient to introduce an auxiliary parameter, �. The expression
or � is:

= exp
(−2ω

RT

)
− 1 (19)

The parameter ˇ is given by

= (1 + 4x1x2�)1/2 (20)

The parameter ˇ is a measure of the tendency towards ordering
n the melt. ˇ = 1 for a perfectly random mixture, ˇ > 1 indicates a
endency for clustering of the end-members, and ˇ < 1 indicates a
endency towards the formation of a compound.

The equation of the partial enthalpy of mixing, Hi,, is [47,54]:

i = �mH + (1 − xi)
d(�mH)

dxi
(21)

here

d(�mH)
dxi

= −2Q

[
1 − 2xi

ˇ + 1
+ 2�(1 − xi)xi(2xi − 1)

ˇ(ˇ + 1)2

]
(22)

To calculate the coefficients of activity at the infinite dilution of
ll solutes, �∞

i
, the excess Gibbs energy of mixing, �mGex, and the

xcess entropy of mixing, �mSex, the following expressions can be
sed [48]:

n �∞
i = 0.5Z∞

i ln(1 + �) (23)

mGex = RT[x1 ln(x1�1) + x2 ln(x2�2)] (24)

mSex = (�mH − �mGex)
T

(25)

As pointed above and following from Eqs. (13)–(15), the calcu-
ation of the thermodynamic functions of mixing in the frames of
his model demands prior knowledge of the values of the energy of
nterchange. The energy of interchange can be calculated according
o the following equation [56]:

298 = kM�E
◦
{

1 − exp

[
−a

(
�˚

˚Li

)2
]}

(26)

here kM, �E◦, a, ˚Li, and �˚ are the reduced constant of
adelung (kM = 1.6 ± 0.05), the charge transfer affinity between the

nlike atoms by formation of a hypothetically pure (100%) ionic
ond and referred to one mole of electrons, an empirical constant
qual to 0.29, the work function of crystalline lithium, and the dif-
erence in the work functions of the alloying metals, respectively.

he value of the charge transfer affinity was found in [56] on the
ase of the correlation between ionic contribution to the bond
nergy and the bond ionicity for compounds with ZnS and NaCl
tructures, using Pauling’s method [57]; and it was found equal to
.05 ± 0.05 eV or 101.3 ± 4.8 kJ mol−1.
cta 507–508 (2010) 35–44

In accordance to the theory of the vacancy mechanism of fusion
[58] we accepted that the energy of interchange at the temperature
of fusion, ωT, is correlated with that of solids at 298 K as

ωT = 0.9ω298 (27)

Further, using the common correlation between excess
enthalpy, Hex, and excess entropy, Sex, of mixing [48,53–56],

Hex = �Sex (28)

where � is constant, gives:

ωT = 0.9ω298

(
1 − T

�

)
(29)

The coefficient �−1 for metal systems is known to be constant
and equals to 4.5 × 10−5 [56].

3.2. Application of the quasi-chemical model for calculation of
the thermodynamic functions of mixing in Ni–Sn system

The calculations were performed for 1580 K on the reason of
the existence of a large set of experimental data for the thermody-
namic functions of mixing at that temperature which is necessary
for the testing of the fitness of the modified quasi-chemical model.
With the substitution of the work function value for Li, Ni and Sn
(ФLi = 2.85, ФNi = 5.20 and ФSn = 4.15 eV [45]) in formula (26) we
obtained ω298 = 6262 J mol−1 and further we arrived by formula
(29) to the following equation for the temperature dependence of
the energy of interchange:

ωT (J mol−1) = 5636 − 0.25T (30)

The formula suggested in [59] was used for evaluation of the
coordination number (CN) of atoms in liquids:

CN = 36
√

2�

	
= 16.21� (31)

where � is the density of atomic packing in liquid. In turn, the den-
sity of atomic packing in the liquid at temperature T can be found
using the following formula [60]:

� = �m

(
T

Tm

)−0.18( V

Vm

)0.249
(32)

where �m and Vm are the density of atomic packing and the molar
volume at the temperature of fusion, Tm, respectively. Note that the
dependence of the molar volume on the temperature is expressed
by the well-known relationship of thermal expansion:

V = Vm[1 + ˛V (T − Tm)] (33)

where ˛V is the coefficient of the volume expansion equal to
0.87 × 10−4 cm3 K−1 for tin [60]. Using VSn

m = 17.03 cm3 mol−1 and
�Sn

m = 0.396 [60], the value of coordination number for tin was
found to be equal to 6.4 at 1580 K. This value is in good agreement
with the result of a calculation performed with help of a more com-
plicated method (CN = 6.9) [61]. According to the theory of [57], the
coordination number of nickel at this temperature was accepted
equal to CN = 0.9(CNc) = 0.9·12 = 10.8 (CNc is coordination number
of the crystalline nickel). We assumed that in liquid alloys, there is
a linear dependence of the effective coordination number, Z, vary-
ing from 10.8 to 6.0 with tin molar fraction increasing from 0 to 0.5,
and this number is constant and equals to 6.0 at tin molar fraction
in the region XSn > 0.5. The later assumption is based on the data

for crystalline structure of Ni–Sn phases in which the Ni and Sn
atoms have coordination numbers 6 and 7 [62]. Integral and par-
tial enthalpies of mixing of the components calculated by Eqs. (14),
(21) and (22) are given in Fig. 5. The following values for the model
parameters were used in calculations: � = −0.529; bSn = 1; bNi = 2/3;
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ig. 5. The integral mixing enthalpy, �mH; the partial mixing enthalpies, HSn, and H

1580 = 5241 J mol−1; Q1580 = Zω1580 = 36,687 J mol−1. The numeri-
al values of the bSn and bNi parameters were calculated using Eqs.
17) and (18) and assuming that maximum of the short range order-
ng had to comply with the formation of the most thermally stable
ompound in the Ni–Sn system (Ni3Sn2). The minimum (�mHmin)
t XSn = 0.4 coincides with the data from [13,41] and �mHmin is
qual to −21.7 ± 4 (modified quasi-chemical model) in comparison
ith −20.0 [13] and −20.2 ± 0.6 kJ mol−1 [41]. The limiting partial

nthalpies, H∞
i

, of Ni (referred to liquid Ni) and Sn (referred to liquid
n) at 1580 K are equal to −36.5 ± 5 kJ mol−1 and −42.9 ± 5 kJ mol−1

Fig. 5), respectively.
The value H∞

i
for Ni is in reasonable agreement with H∞

Ni =
41.9 kJ mol−1 at 1576 K [41]. It is difficult to make a conclusion

oncerning limiting partial enthalpy of mixing for Sn because as for
s we are aware there is a lack of reliable experimental data in the
iterature. The agreement of the calculated and experimental data
n the concentration dependence of tin activity is satisfactory only
n the interval of compositions XSn between 0 and 0.5 (Fig. 6). It can
e suggested that the volume effect begins markedly to intervene
ith increasing of XSn. This effect expresses the positive deviation

f the experimental values for activity from Raoult’s law and also
rom the values of tin activity predicted by the model. It is nec-
ssary to note that a better agreement between the results of the
alculation and the experimental data will be observed for nickel
ue to the well-known rule of crystallochemistry which asserts that

nsertion of atoms of smaller size into a crystalline lattice demands
ower energy contribution.

.3. Application of the Tsuboka–Takayama–Wilson equations for
rediction of the activity coefficients and the Gibbs energy of
ixing

The Wilson’s equations [64] for calculation of the coefficients of

ctivity in two-component system are following:

n �1 = − ln(X1 + 
12X2) + �X2 (34)

n �2 = − ln(
21X1 + X2) − �X1 (35)
the liquid Ni–Sn system at 1580 K according to the modified quasi-chemical model.

� = 
12

X1 + 
12X2
− 
21


21X1 + X2
(36)

where X1 и X2 are the molar fractions of components 1 and 2; 
12
and 
21 are parameters of the Wilson’s model.

The Wilson’s equations for the coefficients of activity are a pair
of transcendental equations which can be solved only numerically
when the experimental activity coefficients are known. The most
commonly used numeric methods are the nonlinear least squares,
the gradient search and the simplex pattern search [65]. In case
the coefficients of activity at infinite dilution are used, the Wilson’s
equations are simplified to [65]:

ln �∞
1 = − ln 
12 + 1 − 
21 (37)

ln �∞
2 = − ln 
21 + 1 − 
12 (38)

Further, these equations can be reduced to the following
expression of a single variable which is solved readily by the trial-
and-error method:


12 = 1
�∞

1

{
exp

[
1 − 1

�∞
2

exp(1 − 
12)

]}
(39)

Then, we have:


21 = 1 − ln(
12�∞
1 ) (40)

Taking into account the values of the coefficients of activity
(�∞

Sn = 0.017 and �∞
Ni = 0.089 calculated by Eq. (23)) and giving

index 1 to tin, index 2 to nickel we obtained after several iterations

12 = 
SnNi = 1.932 and 
21 = 
NiSn = 4.428. The dependencies of
the activity on the concentration calculated by Eqs. (37)–(40) are
plotted in Fig. 6. These values are in a very close agreement with the
results of the modified quasi-chemical model. The Wilson’s equa-
tions as well as the equations of the quasi-chemical model cannot
take into account the volume effect when XSn > 0.5. To overcome

this problem we used the Tsuboka and Katayama modification [46]
of the original Wilson’s equations:

ln �1 = ln
(X1 + V12X2)
X1 + 
12X2

+ (� − �V )X2 (41)
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ig. 6. Nickel and tin activities in Ni–Sn system at 1580 K. (1 and 2) Activities of Sn
espectively (Wilson’s model); (5) activities of Sn (the Tsuboka and Katayama modifi
– experimental data [63] on tin activities.

n �2 = ln
V21X1 + X2


21X1 + X2
− (� − �V )X1 (42)

V = V12

X1 + V12X2
− V21

V21X1 + X2
(43)
= 
12

X1 + 
12X2
− 
21


21X1 + X2
(44)

12 = V2

V1
(45)

ig. 7. The calculated excess Gibbs energy of mixing (combined approach of the modified
he calculated enthalpies of mixing (modified quasi-chemical model, curve 5) at 1580 K in
nd 4) Experimental excess Gibbs energies and integral enthalpies of mixing, respectively
i, respectively (modified quasi-chemical model); (3 and 4) activities of Ni and Sn,
n of the original Wilson’s model); (6) CALPHAD calculations [32,33] of Sn activities;

V21 = V1

V2
(46)

where V2 and V1 are molar volumes and all other symbols have been

indicated earlier. Note, that at V2 = V1 Eqs. (41) and (42) convert to
the original Wilson’s equations.

Fig. 6 illustrates the dependence of tin activity on tin molar frac-
tion, calculated by Eq. (41) compared to the experimental data [63]
and CALPHAD calculations at 1573 K [32,33].

quasi-chemical model and the Tsuboka–Takayama–Wilson equations, curve 2) and
compare with experimental data [13,41,63] and CALPHAD method calculations. (1
; (3) calculated enthalpies of mixing according to the CALPHAD method [32,33].
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The molar volumes used in calculations were V1580
Sn =

8.62 cm3 mol−1 and V1580
Ni = 7.59 cm3 mol−1. It can be seen

hat the Tsuboka–Katayama modification of the Wilson’s equa-
ions seems to take into account volume effect in the range of
Sn = 0.5–1.0 reasonably well. The activity coefficients of the end-
embers of Ni–Sn system, corrected by the method of Tsuboka and

atayama, were further used to derivate the concentration depen-
ence of the excess Gibbs energy of mixing at 1580 K (Eq. (24)). The
esults of an application of the combined approach to the determi-
ation of the mixing quantities for liquid Ni–Sn system at 1580 K
re presented in Fig. 7 (curves 2 and 5) in compare to the experi-
ental data [13,41,63] (solid curves 1 and 4) and CALPHAD method

32,33] (curve 3).
The following cubic polynomial [31], fitting the experimental

ata [63],

mGex = −85.3415X3 + 188.765X2 − 103.454X (47)

here X is the molar fraction of Sn, was used to construct the com-
osition dependence of the excess Gibbs energy of mixing in Fig. 7.

n turn, the following equation, representing the experimental val-
es of the enthalpies of mixing [41]:

mH = X(1 − X)(−46.01 − 6.788X − 209.616X2

+ 203.879X3 − 20.145X4) (48)

here X = XNi, was used to plot the composition dependence of
he enthalpies of mixing. The agreement between predicted and
xperimental mixing quantities for liquid Ni–Sn alloys is seen to be
easonable.

. Conclusions

The standard enthalpy of formation, �fH◦(298.15), of
metastable NiSn was reassessed and �fH◦(298.15) of a

ew metastable NiSn9 compound was estimated. These val-
es were found equal to −54 ± 4 (in good agreement with
alorimetric measurement of Clarke and Dutta [6]) and
85 ± 5 kJ mol−1, respectively. The limiting partial enthalpy
f Ni in solid Sn (H̄lim (Ni) = −3 ± 1 kJ mol−1) and Sn in solid Ni (H̄lim
Sn) = −49 ± 4 kJ mol−1), referred to the solid state of the solutes,
ere determined by a graphical method. The value of H̄lim (Sn)

grees well with data [6].
The heat capacity of NiSn, Ni3Sn4 and NiSn9 was estimated by

ireev’s method with an error of approximately 5%. The calcu-
ated C

◦
p,m(298.15) values of these compounds are 45.1, 160.3 and

28.0 J K−1 mol−1, respectively.
Using different approaches S◦(298.15) (Ni3Sn4) = 256.4 ± 5,

◦(298.15) (NiSn) = 71.7 ± 2 and S◦(298.15) (NiSn9) = 420.7 ±
J K−1 mol−1 were calculated. The value for Ni3Sn4 is very close

o (257.7 J K−1 mol−1) tabulated in a reference book [40]. The
ntropies of NiSn and NiSn9 were estimated for the first time.

It was shown that there is no minimum in the Gibbs energy
iagram for Ni–Sn system in the vicinity of NiSn and NiSn9. There-
ore, we can adopt the point of view of Augis and Bennet [7] that
he equiatomic NiSn is an extension of the composition range of
i3Sn2 and not a low-temperature equilibrium phase. The com-
ound NiSn9, supersaturated by Sn, is also not a low-temperature
quilibrium phase.

The modification of Guggenheim’s quasi-chemical model
ncluding the Blander–Pelton and the Lupis approaches was devel-
ped for liquid binary systems. Methods for the determination of

he model parameters were presented. These methods were based
n prior knowledge of the available values of the work function of
he constituents and the structural data of the constituents and the
ntermetallic compounds. It was shown that the modified quasi-
hemical model as well as Wilson’s model can predict the integral

[
[
[
[
[
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and partial enthalpies of mixing in good agreement with experi-
mental values. The limiting partial enthalpies, H∞

i
, of Ni (referred

to liquid Ni) and Sn (referred to liquid Sn) at 1580 K are equal
to −36.5 ± 5 and −42.9 ± 5 kJ mol−1, respectively. The model takes
into consideration the effects of the temperature and the short
range ordering on thermodynamic functions of mixing, and has
the advantage that prior knowledge of the experimental mixing
quantities is not required. The values of the limiting coefficients of
activity for Ni and Sn at 1580 K are: �∞

Sn = 0.017 and �∞
Ni = 0.089.

The field of application of this model for the coefficients activity and
Gibbs energy of mixing seems to be limited to the systems where
the volume effect does not intervene.

The combined approach on the base of the modified
quasi-chemical model and Tsuboka–Katayama–Wilson’s equations
reproduces in a good approximation the experimental data on the
coefficients activity and the Gibbs energy of mixing for Ni–Sn sys-
tem. Finally, the extension of this approach to the binary systems,
where the volume effect is inherent, is motivated.
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