Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/tca

Thermodynamic studies on Ba_{2.875}UO_{5.875}(s)

Smruti Dash*, Ziley Singh

Product Development Division, Bhabha Atomic Research Centre, Mumbai 400085, India

ARTICLE INFO

Article history: Received 23 March 2010 Received in revised form 26 October 2010 Accepted 2 November 2010 Available online 11 November 2010

Keywords: Barium uranates Gibbs energy of formation Enthalpy of formation Entropy Manometric technique

ABSTRACT

The Gibbs energy of formation of $Ba_{2.875}UO_{5.875}(s)$ has been determined using manometric technique. The equilibrium $CO_2(g)$ pressures over the three phase mixture: $\{Ba_{2.875}UO_{5.875}(s)+Ba_3UO_6(s)+BaCO_3(s)\}$ have been measured using an absolute pressure transducer in the temperature range 1030–1220 K. The corresponding Gibbs energy expression as a function of temperature can be given as:

 $\Delta_{\rm f} G_{\rm m}^{\circ}(T)({\rm Ba}_{2.875}{\rm UO}_{5.875},{\rm s},T)$ (kJ mol⁻¹) ± 5 = -3153.1 + 0.5573 (T/K)

 $\Delta_f H_m^{\circ}(298.15 \text{ K})$ and $S_m^{\circ}(298.15 \text{ K})$ data have been calculated from the above Gibbs energy expression using required values from the literature. The corresponding values are $-3143.4 \pm 2 \text{ kJ} \text{ mol}^{-1}$ and $270.8 \pm 4 \text{ J} \text{ K}^{-1} \text{ mol}^{-1}$, respectively. The $\Delta_f H_m^{\circ}(298.15 \text{ K})$ value has also been calculated from third law method as $-3137.7 \pm 4 \text{ kJ} \text{ mol}^{-1}$.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Barium is an important fission product in an irradiated nuclear fuel. Thus, thermochemical stabilities of compounds in the Ba-U-O system are of importance. The stability of a compound can be calculated from its Gibbs energy of formation values. Hence, $\Delta_{\rm f} G^{\circ}_{\rm m}(T)$ of all barium uranates are required to compute the chemical form of barium in the reactor environment. Allpress [1] and Touzelin and Pialoux [2] investigated Ba-U-O system using Xray diffraction technique. Thermodynamic functions of barium uranates are reported in the literature [3–14]. However, $\Delta_{\rm f} G_{\rm m}^{\circ}(T)$ data are limited [10,15,16]. Recently Banarjee et al. [15] have measured $\Delta_{f}G_{m}^{\circ}(T)$ of BaU₂O₇(s) and Ba₂U₃O₁₁(s) using e.m.f. technique. Yamawaki et al. [16] investigated the vaporization of $BaUO_3(s)$ by means of Knudsen effusion mass spectrometry in the temperature range of 1770-1920 K. Matsuda et al. [10] have calculated $\Delta_{f}G_{m}^{\circ}(BaUO_{3}, s, T)$ from their heat capacity measurements and literature data. The $\Delta_{\mathbf{f}} G^{\circ}_{\mathbf{m}}(T)$ values for other uranates are not reported. In this study, the $CO_2(g)$ pressure measurements have been carried out to determine $\Delta_{f}G_{m}^{\circ}(Ba_{2.875}UO_{5.875}, s, T)$ values using a static manometric technique in the temperature range 1030-1220 K.

2. Experimental

2.1. Material preparation

 $Ba_{2.875}UO_{5.875}(s)$ was prepared by the solid state reaction of $BaCO_3(s)$ (0.997 mass fraction, B.D.H, UK) with $U_3O_8(s)$ (0.9999 mass fraction purity, Nuclear Fuel Complex, Hyderabad, India) in the presence of air. $BaCO_3(s)$ and $U_3O_8(s)$ were mixed thoroughly in the ratio of 8.625:1 and calcined at 1273 K for 300 h in an alumina boat with intermediate grindings. $Ba_{2.875}UO_{5.875}(s)$ has been formed due to following reaction:

$$BaCO_{3}(s) + U_{3}O_{8}(s) + 1/2O_{2}(g) = 3Ba_{2.875}UO_{5.875}(s) + CO_{2}(g).$$
(1)

The resulting reddish-orange coloured compound was characterized as Ba_{2.875}UO_{5.875}(s) by X-ray diffraction (XRD). The XRD pattern was taken on a STOE X-ray diffractometer, Germany, using Ni filtered Cu K₍ radiation. The X-ray diffraction (XRD) pattern shown in Fig. 1 agreed well with that reported in the literature [17,18]. Griffiths and Kemmler [17] found this compound besides Ba₃UO₆(s) in the BaO-UO₃ system.

A three phase mixture: $\{Ba_{2.875}UO_{5.875}(s) + Ba_3UO_6(s) + BaCO_3(s)\}\$ was prepared under dry condition and made into pellets under a pressure of 100 MPa. The pellets were dried and stored in a desiccator for manometric measurements.

2.2. Equilibrium technique

An all-metal ultra-high vacuum system similar to that employed earlier [19] was used to measure $CO_2(g)$ pressures. The assem-

^{*} Corresponding author. Tel.: +91 22 2559 0648; fax: +91 22 2550 5151. *E-mail address:* smruti@barc.gov.in (S. Dash).

^{0040-6031/\$ –} see front matter s 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.tca.2010.11.007

Fig. 1. X-ray diffraction pattern of Ba_{2.875}UO_{5.875}(s). The intensity, *I* (arbitrary unit) of peaks are plotted in y axis and the diffraction angle 2θ (°) in x-axis.

bly was evacuated and tested for leak tightness for 400 h before actual pressure measurements. The pellets of ternary mixture $\{Ba_{2.875}UO_{5.875}(s)+Ba_3UO_6(s)+BaCO_3(s)\}$ were placed in an alumina boat and loaded into the quartz reaction tube, which was attached to the vacuum system. The sample was heated by a Kanthal wire-wound furnace and the temperature of the sample was maintained within ± 1 K and was measured using a pre-calibrated chromel-to-alumel thermocouple. Before measuring the CO₂(g) pressures, the pellets were annealed under vacuum at an oxygen partial pressure of 10^{-5} kPa at 500 K for 400 h.

The CO₂(g) pressures were measured by a absolute pressure transducer supplied by Edwards, USA. The accuracy of the transducer was $\pm 0.25\%$ of the reading. This transducer was calibrated by measuring oxygen pressure over two phase mixture: $\{Cu_2O(s)+CuO(s)\}$.

The attainment of equilibrium $p(CO_2)$ over {Ba_{2.875}UO_{5.875}(s) + Ba₃UO₆(s)+BaCO₃(s)} was checked by evacuating some CO₂(g) and allowing the equilibrium to be attained again. An equilibrium time of 200–400 h was generally required for each experimental temperature. The X-ray diffraction pattern shown in Fig. 2 was taken after the experiment. It did not show any new peaks which is a proof of absence of any solid phases other than participating in reaction (2). This observation confirmed co-existence of the three phase mixture: {Ba_{2.875}UO_{5.875}(s)+Ba₃UO₆(s)+BaCO₃(s)}.

3. Results

The $CO_2(g)$ pressures generated due to the reaction:

 $8Ba_{2.875}UO_{5.875}(s) + BaCO_3(s) = 8Ba_3UO_6(s) + CO_2(g)$ (2)

The variation of $p(CO_2,g)$ at various temperatures is given in Table 1 and shown in Fig. 3 and can be represented by the following least squares expression:

$$\{\ln p(CO_2, g)/kPa\} \pm 0.05 = 12.278 - 12787 \ (K/T).$$
 (3)

The $\Delta_r G_m^{\circ}(T)$ for the reaction (2) can be given as:

$$\Delta_{\rm r} G^{\circ}_{\rm m}(T) = -RT \ln p({\rm CO}_2, {\rm g}) = 8 \,\Delta_{\rm f} G^{\circ}_{\rm m}({\rm Ba}_3 {\rm UO}_6, {\rm s}, T) + \Delta_{\rm f} G^{\circ}_{\rm m}({\rm CO}_2, {\rm g}, T) - 8 \,\Delta_{\rm f} G^{\circ}_{\rm m}({\rm Ba}_{2.875} {\rm UO}_{5.875}, {\rm s}, T) - \Delta_{\rm f} G^{\circ}_{\rm m}({\rm BaCO}_3, {\rm s}, T)$$
(4)

Fig. 2. X-ray diffraction pattern of the mixture: $\{BaCO_3(s) + Ba_3UO_6(s) + Ba_{2,875}UO_{5,875}(s)\}$ after the experiment). The XRD peaks of $BaCO_3(s)$, $Ba_3UO_6(s)$ and $Ba_{2,875}UO_{5,875}(s)\}$ are shown with different symbols.

Table 1

Equilibrium $CO_2(g)$ pressures at different temperatures over the three phase mixture: $\{Ba_{2,875}UO_{5,875}(s) Ba_3UO_6(s) + BaCO_3(s)\}$.

<i>T</i> (K)	$10 \cdot p(CO_2, g) (kPa)$	T/K	$10 \cdot p(CO_2, g) (kPa)$
1030	8.65 ± 0.02	1110	22.8 ± 0.06
1040	9.32 ± 0.02	1120	24.2 ± 0.07
1060	12.0 ± 0.03	1140	28.71 ± 0.09
1070	14.4 ± 0.04	1157	35.16 ± 0.10
1071	13.3 ± 0.03	1168	37.48 ± 0.12
1080	15.8 ± 0.04	1178	39.91 ± 0.11
1090	17.0 ± 0.07	1191	48.85 ± 0.12
1100	19.8 ± 0.09	1220	55.96 ± 0.14

The $\Delta_r G^{\circ}_m(T)$ can be calculated from Eqs. (4) and (3) and are given as:

 $\{\Delta_r G_m^{\circ}(T)(kJ mol^{-1})\} \pm 0.3 = 106.3 - 0.0637 (T/K)$

$$\times (1030 \le T/K \le 1220)$$
 (5)

Fig. 3. Temperature dependence of equilibrium vapour pressure of $CO_2(g)$ over phase mixture: { $Ba_{2.875}UO_{5.875}(s) + Ba_3UO_6(s) + BaCO_3(s)$ }.

The $\Delta_f G_m^{\circ}(Ba_{2.875}UO_{5.875}, s, T)$ has been computed using Eq. (5) and $\Delta_f G_m^{\circ}(T)$ values for BaCO₃(s) [20] and CO₂(g) [21] from Eqs. (6) and (7)

$$\Delta_{\rm f} G^{\circ}({\rm BaCO}_3, {\rm s}, T) \ ({\rm kJ} \ {\rm mol}^{-1}) = -1194.7 + 0.2403 \ (T/{\rm K}),$$
 (6)

$$\Delta_{\rm f} G^{\circ}({\rm CO}_2, {\rm g}, T) \ ({\rm kJ} \ {\rm mol}^{-1}) = -394.8 - 0.00108 \ (T/{\rm K}),$$
 (7)

and that for $Ba_3UO_6(s)$ from Table 2. The corresponding $\Delta_f G_m^{\circ}(Ba_{2.875}UO_{5.875}, s, T)$ expression can be given as:

$$\begin{array}{ll} \Delta_{f}G_{m}^{\circ}(\text{Ba}_{2.875}\text{UO}_{5.875},\,\text{s},\,T)(\pm5\ \text{kJ}\ \text{mol}^{-1})=-3153.1+0.5573\\ \\ \times\ (T/\text{K})\ (1030\leq T/\text{K}\leq 1220) \end{array} \tag{8}$$

The intercept and slope of above Gibbs energy expression gives enthalpy of formation and entropy of Ba_{2.875}UO_{5.875}(s) at 1125 K, experimental average temperature. Using heat capacity values from our studies [22], enthalpy and entropy of transitions of barium from JANAF tables [21] and uranium from CODATA [23], $\Delta_f H_m^{\circ}(298.15 \text{ K})$ and $S_m^{\circ}(298.15 \text{ K})$ have been calculated from second law method. The corresponding values are $-3143.4 \pm 2 \text{ kJ} \text{ mol}^{-1}$ and $270.8 \pm 4 \text{ J} \text{ K}^{-1} \text{ mol}^{-1}$. The $\Delta_f H_m^{\circ}(298.15 \text{ K})$ values were also calculated by the third law method for each experimental points using Gibbs energy functions: $\phi_m^{\circ} = \{(G_m^{\circ}(T) - H_m^{\circ} (298.15 \text{ K}))/T\}$ for Ba_{2.875}UO_{5.875}(s) and Ba₃UO₆(s) from our previous study [22] and that for BaCO₃(s) and CO₂(g) from the literature [20,21]. This value is $-3137.7 \pm 4 \text{ kJ} \text{ mol}^{-1}$ which, is selected as $\Delta_f H_m^{\circ}(\text{Ba}_{2.875}\text{ UO}_{5.875}, \text{ s},298.15 \text{ K})$.

4. Discussion

Experimental Gibbs energy data on Ba_{2.875}UO_{5.875}(s) have not been reported in the literature. However, present authors [22] have calculated it from the heat capacity and literature data. This expression is included in Table 2 for comparisons. $\Delta_f G_m^\circ$ (1100 K) calculated from Ref. [22] (-2545.6 kJ mol⁻¹) and this study (-2540.1 ± 5 kJ mol⁻¹) matches well. $\Delta_f G_m^\circ(T)$ values for Ba₃UO₆(s) [22] and BaUO₄(s) [11,20] have been fitted into expression and are included in Table 2. $\Delta_f G_m^\circ(T)$ values for Ba₂U₃O₁₁(s) and BaU₂O₇(s) reported in our previous study [15] have also been given in Table 2. Heat capacity expressions and $S_m^\circ(298.15 \text{ K})$ data reported for Ba-U-O system [11,20,22,24] are also included in Table 2.

The $\Delta_f G_m^\circ(T)/g$ of Ba₃UO₆(s), Ba_{2.875}UO_{5.875}(s), BaUO₄(s), BaU₂O₇(s) and Ba₂U₃O₁₁(s) have been plotted as a function of temperature in Fig. 4. It shows that, in the sixth oxidation state of uranium, Ba₃UO₆(s) is the most stable and BaU₂O₇(s) as least stable barium uranate. It leads to the conclusion that addition of BaO(s) into BaUO₄(s) increases its stability more than the addition of UO₃(s) into BaUO₄(s).

Fig. 5 gives the plot of enthalpy of formations of $Ba_x U_y O_{x+3y}(s)$ (hexa valent barium uranates, given in Table 2) as a function of atomic weight. It shows a regular decrease in $\Delta_f H_m^{\circ}(298.15 \text{ K})$ with increase in atomic weight. The enthalpy of formation of $Ba_x U_y O_{x+3y}(s)$ can be calculated from the following expression:

$$\Delta_{f} H_{m}^{\circ}(\text{Ba}_{x} U_{y} O_{x+3y}, s, 298.15 \text{ K}) \{(\pm 1\%) \text{ kJ mol}^{-1}\}$$

= -684.43 × -1252.518y + 62.9y/(x - 2y), (9)

where x and y are the number of barium and uranium atoms in $Ba_x U_y O_{x+3y}(s)$. When $\Delta_f H_m^{\circ}(298.15 \text{ K})/g$ values of hexa-valent barium uranates are plotted against Ba/U mole ratio, two different lines with opposite slope are obtained which are shown in Fig. 6. The $\Delta_f H_m^{\circ}(298.15 \text{ K})/g$ of $Ba_2 U_3 O_{11}(s)$ [11] $Ba U_2 O_7(s)$ [24] and $Ba U O_4(s)$ [25] fall in one series and $Ba U O_4(s)$ [25], $Ba_{2.875} U O_{2.875}(s)$ and

Fig. 4. The standard molar Gibbs energy of formatiom of barium uranates in BaO- UO_3 system.

Fig. 5. The plot of $\Delta_f H^{\circ}_m(298.15 \text{ K})$ versus temperature for barium uranates in BaO-UO₃ system.

Fig. 6. The plot of $\Delta_f H_m^{\circ}(298.15 \text{ K})/\text{g}$ versus Ba/U mole ratio for barium uranates in BaO-UO₃ system.

Table 2

Thermodynamic functions for compounds in Ba-U-O system. Gibbs energy is expressed as: $\Delta_f G_m^{\circ}(T)/\text{KJ} \text{ mol}^{-1} = A + B$ (*T*/K) and molar heat capacity is expressed as: $C_{p,m}^{\circ}(T)/\text{J} \text{ K}^{-1}$ mol⁻¹ = $a + b(T/\text{K}) + c(\text{K}/T)^2$.

Compounds	Method	Temperature range T/K	$\Delta_{\rm f} G^{\circ}_{\rm m}(T)/{\rm KJ}~{ m mol}^{-1}$		$\Delta_{\rm f} G_{\rm m}^{\circ}(T)/{\rm KJ}~{\rm mol}^{-1}$ $\Delta_{\rm f} H_{\rm m}^{\circ}(298.15~{\rm K})/{\rm kJ}~{\rm mol}^{-1}$ $S_{\rm m}^{\circ}(298.15~{\rm K})/{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$		$C_{p,m}^{\circ}(T)/J K^{-1} mol^{-1} = a + b (T/K) + c (K/T)^{2}$		
			A	В			а	$b \times 10^3$	$c \times 10^{-5}$
BaUO ₃ (s)	KEMS [16]	1770-1920	-	-	-1742.5 ± 1.7	_	-	-	-
[9,10,16,24]	E.m.f. [26]	1060-1090	-	-	_	-	-	-	-
	DSC [10]	373-873	-1722.7ª	0.2709	_	142	126.6	16.1	-1.42
	SC [9]	-	-	-	$-1690 \pm 10[24]$	-	-	-	-
Ba ₂ U ₂ O ₇ (s) [7,24]	SC [7]	-	-	-	-3740.0 ± 6.3 [24]	296 ± 15 [24]	-	-	-
BaUO ₄ (s)	SC [25]	-	-	-	-1993.8 ± 3.3 [24]	154.0±2.5 [24]	-	-	-
[11,19,24,25]	C [20]	-	-1994.8 ^b	0.3476	_	-	153.781 ^b	9.179	-27.778
							-	-	-
$BaU_2O_7(s)$	E.m.f. [15]	1001-1206	-3243.8	0.6148	_	-	-	-	-
[7,15,22,24]	SC [7]	-	-	-	-3237.2 ± 5 [24]	260 ± 15 [24]	-	-	-
	CV [22]	299-1000	-3239.2	0.6154	_	260.7 ± 4	214.51	61.254	-37.665
$Ba_2U_3O_{11}(s)$	E.m.f. [15]	1009-1178.5	-5229.3	0.9709	-5237.2	-	-	-	-
[11,15,22]	E[11]	-	-	-	-5250 ± 25 [11]	405±5[11]	-	-	-
	CV [22]	323-1000	-5235.8	0.9755	-	411.2 ± 4	396.4	31.094	70.966
BaU _{6.42} O _{19.7} (s) [32]	E [32]	-	-	-	-8509.6	-	-	-	-
$Ba_3UO_6(s)$	SC [7]	-	-	-	-3210.4 ± 8 [24]	298 ± 15 [24]	-	-	-
[7,11,22,24]	CV [22]	302-1012	-3239.8 ^c	0.5795	-	296.5 ± 4	307.12	7.4788	-82.742
Ba _{2.875} UO _{5.875} (s)	CV [22]	306-1011	-	-	-	281.7 ± 4	287.64	9.498	-67.054
[22]	E	900-1200	-3137.0 ^c	0.5378	_	-	-	-	-
Present study	М	1030-1220	-3153.1	0.5573	3137.3±4	270.8 ± 4	-	-	-

KEMS = Knudsen effusion mass-spectrometry, E.m.f. = solid oxide galvanic cell method, DSC = Differential Scannining Calorimetry, SC = Solution Calorimetry, E = estimated, CV = Calvet Calorimetry, M = manometry, C = compilation.

^a Calculated in this study from [10].

^b Given in Ref. [11].

^c Calculated in this study from [22].

Ba₃UO₆(s) [24] in a different series. In the former series, addition of UO₃(s) increases the $\Delta_f H_m^{\circ}(298.15 \text{ K})/g$ value and in the latter series addition of BaO(s) decreases $\Delta_f H_m^{\circ}(298.15 \text{ K})/g$ value. This observation also leads to a conclusion that BaO(s) stabilizes the barium uranates more than UO₃(s).

While plotting $\Delta_{f}H_{m}^{\circ}(298.15 \text{ K})$ as a function of Ba/U, Cordfunke et al. [26] observed $\Delta_{f}H_{m}^{\circ}(298.15 \text{ K})$ of $B_{1+y1}UO_{3+x1}$ and $Ba_{3}UO_{6}(s)$ are on the same line as $BaUO_{3}-Ba_{1+y1}UO_{3+x1}-Ba_{3}UO_{6}$ belongs to perovskite series. In contrast, enthalpy of formation of $Ba_{2}U_{2}O_{7}(s)$ does not fall on the line as crystal structure of $Ba_{1+y1}UO_{3+x}$ is different from $Ba_{2}U_{2}O_{7}(s)$.

The stability of compounds in Ba-U-O system is poorly known [27]. The oxygen and barium potential diagrams for Ba-U-O system have been calculated using FactSage programme [28] and are shown in Figs. 7–9. Fig. 7 shows that BaUO₃(s) coexists with $UO_2(s)$ as well as with BaO(s) whereas $Ba_3UO_6(s)$ with BaO(s). $Ba_3U_2O_8(s)$, $Ba_2U_2O_7(s)$, $Ba_2U_3O_{11}(s)$ and $BaUO_4(s)$ coexist with $UO_2(s)$ where as $BaU_2O_7(s)$ with $U_3O_8(s)$ and $BaU_{6,24}O_{19,7}(s)$ with $UO_3(s)$. Fig. 8 shows that $BaUO_3(s)$ is stable above barium potential $-225 \text{ kJ} \text{ mol}^{-1}$ and $Ba_3 UO_6(s)$ in the range of -572 to $-225 \text{ kJ} \text{ mol}^{-1}$. Ba₃U₂O₈(s) is stable in a limited barium potential range that is -225 to -209 kJ mol⁻¹. BaUO₄(s) is stable in the barium potential range -600 to -510 kJ mol⁻¹. BaU₂O₇(s) and $Ba_2U_3O_{11}(s)$ are stable below $-600 \text{ kJ} \text{ mol}^{-1}$ and $BaU_{6,24}O_{19,7}(s)$ is stable at lowest barium potential of $-823 \text{ kJ} \text{ mol}^{-1}$. UO₃(s) is stable at very low barium activity. Adamson et al. [29] reported the oxygen potential for LWR fuel to be between -550 and -450 kJ mol⁻¹. Minato et al. [30] calculated the behavior of fission products in irradiated triso-coated UO₂(s) and given a plot for equilibrium vapor pressures of the species containing barium and strontium in the fuel. Cordfunke and IJdo [12] calculated Ba(g) over UO₂(s) at 1300 K to be around 10^{-13} kPa. In this study. the oxygen and barium potential of fuel are taken as -500 ± 50 and -200 ± 50 kJ mol⁻¹, respectively, to predict the form in which the barium compounds may be present in the fuel. Figs. 7 and 8 show that BaUO₃(s), Ba₃U₂O₈(s), Ba₂U₂O₇(s) or Ba₃UO₆(s) will be possible. From these figures it is evident that stability region of Ba₃U₂O₈(s) and Ba₂U₂O₇(s) are limited. Hence, either BaUO₃(s) or Ba₃UO₆(s) will be formed, depending on the oxygen and barium pressures in the fuel element. As the BaUO₃(s) coexists with UO₂(s) and Ba₃UO₆(s) with BaO(s), BaUO₃(s) may be formed in the UO₂(s) matrix. At 1600 K, BaO(g) pressure is more than 10^{-7} kPa [30], hence there is a possibility of precipitation of BaO(s) and formation of Ba₃UO₆(s) in the cooler zone of fuel. Using X-ray microanalysis of highly irradiated fuel, Kleykamp et al. [31] showed the presence of BaUO₃(s) in grey phase. Hence, BaUO₃(s) will be stable under the reactor conditions.

Fig. 7. Oxygen potential diagram for Ba-U-O system at 1000 K.

Fig. 8. Barium potential diagram for Ba-U-O system at 1000 K. BaUO_{3+x}(s) is a non-Stoichiometric compound with distorted pervoskite structure. The equilibrium phase fields: $Y = UO_2(s) + U_4O_9(s)$, $Y1 = U_3O_8(s) + BaU_{6.24}O_{19.7}(s)$, $Y2 = BaU_2O_7(s) + BaU_{6,24}O_{19,7}(s)$ and $Y3 = Ba_2U_2O_7(s) + Ba_3U_2O_8(s)$, $Y4 = Ba_2U_2O_7(s)$, Y4 = $BaUO_4(s)$, $Y5 = Ba_{2.875} UO_{5.875}(s) + BaUO_4(s)$ and $Y6 = Ba_{2.875} UO_{5.875}(s) + Ba_3 UO_6(s)$.

Fig. 9. The B and B1 portions of Fig. 8.

5. Conclusion

The standard molar Gibbs energy of formation of $Ba_{2.875}UO_{2.875}(s)$ has been measured for the first time. $\Delta_f H_m^{\circ}$

(Ba_{2.875}UO_{2.875}, s, 298.15 K) value calculated from third law is -3137.7 ± 4 kJ mol⁻¹. $\Delta_f G_m^{\circ}(T)$ per mole of O₂(g) data as a function of temperature have been plotted for various barium uranates in BaO-UO₃ system. It has been concluded from the plot that higher mole fraction of BaO(s) stabilizes the barium uranates. The oxygen and barium potential diagrams for Ba-U-O system have been calculated. The calculations show that BaUO₃(s) will be formed in the $UO_2(s)$ matrix.

References

- [1] J.G. Allpress, J. Inorg. Nucl. Chem. 26 (1964) 1847.
- B. Touzelin, A. Pialoux, J. Nucl. Mater. 217 (1994) 233. [2]
- [3] R. Saha, R. Babu, N. Nagarajan, C.K. Mathews, Thermochim. Acta 131 (1988) 183
- [4] E.F. Westrum, H.A. Zainel, D. Jakes, in: Proceedings Symposium on Thermodynamics of Nuclear Materials, IAEA, Vienna, vol. II, 1979.
- [5] P.A.G. O'Hare, J. Boerio, H.R. Hoekstra, J. Chem. Thermodyn. 12 (1980) 1003.
- [6] L.R. Morss, C.W. Williams, I.K. Choi, R. Gene, J. Fuger, J. Chem. Thermodyn. 15 (1983) 1093.
- E.H.P. Cordfunke, W. Ouweltjes, J. Chem. Thermodyn. 20 (1988) 235.
- [8] J. Hung, M. Yamawaki, K. Yamaguchi, M. Yasumoto, H. Sakurai, Y. Suzuki, J. Nucl. Mater. 248 (1997) 257.
- [9] C.W. Williams, L.R. Morss, I.K. Choi, ACS Symp. Ser., Am. Chem. Sot. 246 (1984) 323
- [10] T. Matsuda, S. Yamanaka, K. Kurosaki, M. Uno, S. Kobayashi, J. Alloys Compd. 322 (2001) 77.
- [11] E.H.P. Cordfunke, R.J.M. Konings (Ed.), Thermochemical Data for Reactor Materials and Fission Products, North-Holland, Amsterdam, 1990.
- [12] E.H.P. Cordfunke, D.J.W. IJdo, J. Phys. Chem. Solids 49 (1988) 551.
- [13] F. Chen, R.C. Ewing, S.B. Clark, Am. Miner. 84 (1999) 650.
- L.R. Morss, J. Chem. Thermodyn. 34 (2002) 229. [14]
- 151 A. Banerjee, S. Dash, R. Prasad, V. Venugopal, J Alloys Compd. 377 (2004) 98.
- [16] M. Yamawaki, J. Huang, K. Yamaguchi, M. Yasumoto, H. Sakurai, Y. Suzuki, J. Nucl. Mater. 231 (1996) 199.
- [17] A. Griffiths, S.S. Kemmler, Z. Anorg. Allg. Chem. 457 (1979) 161.
- U. Treiber, A.J. Griffiths, S.S. Kemmler, Z. Anorg. Allg. Chem. 473 (1981) 171. [18]
- [19] R. Prasad, S. Dash, S.C. Parida, V. Venugopal, J. Alloys Compd. 398 (2005) 219.
- [20] I. Barin, Thermochemical Data of Pure Substance, 3rd Ed., VCH, Weinheim, (Federal Republic of Germany) 1995.
- NIST JANAF Thermochemical Tables, 4th Edition, M.W. Chase Jr., (Ed.), J. Phys. [21] Chem. Ref. Data Monogr. 9, 1998.
- S. Dash, Z. Singh, J. Nucl. Mater. 404 (2010) 9.
- J.D. Cox, D.D. Wagman, V.A. Medvedev (Eds.), CODATA Key Values for Thermo-[23] dynamics, New York, 1989.
- [24] I. Grenthe, J. Fuger, R.J.M. Konings, R.J. Lemire, A.B. Muller, C.N. Cregu, H. Wanner, in: H. Wanner, I. Forest, (Eds.), OECD Nuclear Energy Agency, Data Bank, Chemical Thermodynamics, 2004.
- P.A.G. O'Hare, J. Boerio, H.R. Hoekstra, J. Chem. Thermodyn. 8 (1976) 845.
- [26] E.H.P. Cordfunke, A.S. Booij, V. Smit-Groen, P. Vlaanderen, D.J.W. IJdo, J. Solid State Chem. 131 (1997) 341.
- [27] E.H.P. Cordfunke, R.J.M. Konings, J. Nucl. Mater. 152 (1988) 301.
- [28] FactSage, Version 5.4.1, The Integrated Thermodynamic Data Bank System, GTT-Technologies, GmbH, Germany, 1976-2006.
- [29] M.G. Adamson, E.A. Aitkin, S.K. Evans, J.H. Davies, in: Proc. Symp. on Thermodynamics of Nuclear Materials Vienna, 1974 (IAEA, Vienna, 1975), p. 59.
- [30] C.K. Minato, T. Ogawa, K. Fukuda, M. Shimizu, Y. Tayama, I. Takahashi, J. Nucl. Mater, 208 (1994) 266.
- [31] H. Kleykamp, J.O. Paschoal, R. Pesjka, F. Thiirnmler, J. Nucl. Mater. 130 (1985) 426.
- [32] S. Dash, Z. Singh, R. Prasad, V. Venugopal, J. Nucl. Mater. 279 (2000) 84.