THERMOANALYTISCHE UNTERSUCHUNGEN AN RAUCHFARBSTOFFEN

G. KRIEN

Bundesinstitut für chemisch-technische Untersuchungen beim Bundesamt für Wehrtechnik und Beschaffung (BICT), D-5357 Swisttal-1 (B.R.D.)

(Eingegangen am 21 Mai 1984)

ABSTRACT

For some dyes which produce coloured smoke on burning pyrotechnic mixtures, the following thermal and calorimetric data were measured: melting, transition, decomposition and vapour temperatures, vapour pressures, melting, transition, sublimation and vaporisation enthalpies, and the specific heats as a function of temperature in the solid and liquid state. From these data the boiling temperatures and enthalpies of dye formation were calculated. Hence, it is possible to determine the balance of energy for coloured smoke-producing pyrotechnic mixtures.

ZUSAMMENFASSUNG

An Rauchfarbstoffen, die zur Erzeugung farbiger Rauche beim Abschwelen pyrotechnischer Sätze dienen, wurden folgende thermische und kalorische Daten gemessen: Schmelzund Umwandlungstemperaturen, Zersetzungs- und Verdampfungstemperaturen, Dampfdrücke, Schmelz-, Umwandlungs-, Sublimations- und Verdampfungsenthalpien, sowie die spezifische Wärme als Funktion der Temperatur im festen und flüssigen Zustand. Aus ihnen wurden Siedetemperaturen und Rauchbildungsenthalpien berechnet. Dadurch wurde es möglich, die Energiebilanz in pyrotechnischen Rauchsätzen zu ermitteln.

EINLEITUNG

Farbige Rauche werden mit pyrotechnischen Sätzen erzeugt. Diese pyrotechnischen Rauchsätze bestehen aus Komponenten, die nach Anzündung exotherm miteinander reagieren, dem sogenannten Heizbett und aus organischen Rauchfarbstoffen. Beim Verschwelen oder Abbrennen des Heizbettes des Rauchsatzes verdampfen die Farbstoffe und bilden als Aerosol farbige Rauche, die für Signalzwecke verwendet werden. Derartige Rauchsätze sind bisher kaum systematisch physikalisch-chemisch untersucht worden. Daher waren quantitative Angaben über Vorgänge beim Verschwelen der Rauchsätze und auch über optimale Anforderungen an das Heizbett und über den Energiebedarf beim Erwärmen und Verdampfen der Rauchfarbstoffe bisher nicht möglich.

10,011	sector manager functions according		an rompara							
Lfd.	Rauchfarbstoff			$T_{\rm U}$	$T_{\rm F}$	T _k	T _{zL}	T _{zn}	Tv	t
Nr.	Chemische Bezeichnung	Firmen-Bezeichnung	C.I. Nr.	$\begin{pmatrix} \circ C \\ \mathbf{K} \end{pmatrix}$	$\begin{pmatrix} \circ C \\ K \end{pmatrix}$	$\begin{pmatrix} \circ C \\ K \end{pmatrix}$	(°C)	(°C)	()	
-	1-Aminoanthrachinon	Rauchorange G	37275		252	436	477	455	206	1
ć	1-Amino-2-methol-	Ranchorance	60700	180	525 203	709 403	755	461	000	
ı	anthrachinon	LK 6044		453	476	676	2 -	Ĩ	87	
e	1-Amino-2-brom-	Rauchblau R	62100	_1	232	457	260	264	260	
	4-p-toluidino-				505	730				
	anthrachinon									
4	1-Amino-2-methyl-	Rauchbiau C	62080	I	268	635	330	430	290	
	4-p-toluidino-				541	806				
	anthrachinon									
5	Anisol-2-azo-	Sico-Fettrot	12150	ł	180	365	235	225	203	
	1,2-naphthol	BG neu			453	638				
9	p-Diethylamino-	Sico-Fettgelb P	11021	1	16	527	300	> 390	170	
	azobenzol				364	800				
7	1,4-Diamino-	Rauchviolett	61100	259	261	. 645	470	466	227	
	anthrachinon	LK 6064		532	534	918				
×	1,5-Diamino-	Rauchrot F		I	314	675	437	440	257	
	anthrachinon				587	948				
6	1,4-Diisobutyl-	Ceresblau R	1	I	140	1080	244	265	222	
	aminoanthrachinon				413	1353				
10	1,4-Di- <i>n</i> -butyl-	Sico-Fettblau	ł	105	116	438	280	263	206	
	aminoanthrachinon	50401 N		378	389	711				

Ergebnisse thermoanalytischer Messungen von charakteristischen Temperaturen von Rauchfarbstoffen

TABELLE 1

11	1,4-Dimethylamino-	Rauchfarbstoff	61500	ł	210	376	233	249	199
	anthrachinon	blau			483	649			
12	1,4-Dihydroxi-	Rauchorange R	58050	174	194	458	436	> 455	162
	anthrachinon			447	467	731			
13	2-Hydroxi-1-phenyl-	Sico-Fettorange R	12055	. 1	125	361	195	229	157
	azonaphthalin				398	634			
14	2-Hydroxi-4-p-	Macro-Lexviolett	60725	158	188	386	336	438	181
	toluidinoanthra-	в		431	461	629			
	chinon								
15	1-Methylamino-	Rauchrot M	60505	ļ	164	426	426	451	180
	anthrachinon				437	669			
16	1-Methylamino-	Sico-Fettblau	61520	I	143	444	190	290	260
	4-m-toluidino-	R 8075			416	717			
	anthrachinon								
17	1-Methylamino-	Rauchblau A	61525	I	197	458	272	272	236
	4-p-toluidino-				470	731			
	anthrachinon								
18	2-Phthalo-	Waxoline	47000	152 ^a	236	467	380	435	243
	chinolin	Yellow T		425	509	740			
19	Phenyl-1-azo-4,3-	Sico-Fett-	12700	-	146	1387	204	206	194
	methyl-1-phenyl-5-	zitronengelb			419	1660			
	hydroxipyrazol	5G3							
20	p, p'-Tetramethyldi-	Auramin Konz.	41000	ļ	260	ء ا	216	236	204
	amino-diphenyl-				533				
	ketonimin-								
	hydrochlorid								

^a Dehydratation: 1,5 Mol H₂O. ^b Messung wegen Zersekung nicht möglich.

31

1

:

•

i

;

I

I

i

I

Die erforderlichen thermischen und kalorischen Daten sind mit thermoanalytischen Methoden messbar und wurden daher für 20 übliche Rauchfarbstoffe bestimmt.

VERSUCHSDURCHFÜHRUNG

Die Messungen wurden an 20 Rauchfarbstoffen technischer Reinheit durchgeführt. Die chemische Bezeichnung, die Firmenbezeichnung und die Colour-Index-Nr. [1] der einzelnen Substanzen sind aus Tabelle 1 zu ersehen.

Die Daten wurden unter folgenden Versuchsbedingungen ermittelt:

(1) Schmelz-, Umwandlungs-, Zersetzungs- und Verdampfungstemperatur:

Simultan-DTA-TG

Probenmenge	10 bis 20 mg
Heizrate	$6 \mathrm{K} \mathrm{min}^{-1}$
Atmosphäre	trockene Luft oder trockener Stickstoff
Tiegelmaterial	Al oder Porzellan
Gerät	Thermoanalyzer II, Mettler

(2) Dampfdruck, Sublimations- und Verdampfungsenthalpien:

Thermowaage mit Knudsen-Zelle

Probenmenge	ca. 500 mg
Effusionsöffnung	3 mm Ø
Umgebungsdruck	
der Messzelle	ca. 1×10^{-5} mbar
Temperaturbereich	
des Ofens	50 bis 165 °C
Gerät	Thermoanalyzer II, Mettler, mit Vakuumsystem

(3) Umwandlungs-, Schmelz- und Zersetzungsenthalpien, spezifische Wärme:

Dynamische Differenz-Kalorimetrie (DDK)

Probenmenge	2 bis 10 mg
Probenträger	Al-Kapseln, verschlossen
Atmosphäre	Luft oder Stickstoff
Gerät	Mettler TA 2000 und Mettler TA 3000

THERMISCHE UND KALORISCHE DATEN

Charakteristische Temperaturen

Zur Bestimmung der Kristallumwandlungs- und Schmelztemperatur wurde die Simultan-DTA-TG-Apparatur mit den Vergleichssubstanzen der ICTA [2] kalibriert. Die gemessenen Temperaturen sind aus Tabelle 1 zu entnehmen. Abbildung 1 zeigt Kurven der Simultan-DTA-TG-Messung von Anisol-2-azo-1,2-naphtol. Als Zersetzungstemperatur T_{ZL} wurde die niedrigste Temperatur angegeben, bei der unter den angewendeten Versuchsbedingungen die exotherme Zersetzung des Rauchfarbstoffes unter der Einwirkung von Luft aus der DTA-Kurve erkennbar ist. Die Zersetzungstemperatur ist keine, den Stoff charakterisierende Konstante, sie gibt aber wertvolle Informationen über das allgemeine thermische Verhalten des Rauchfarbstoffes. Da der Farbstoff im Rauchsatz beim Abschwelen nicht in Luft, sondern in den Schwelgasen (CO₂, N₂ u.s.w.) thermisch beansprucht wird, wurde auch die Temperatur des Beginns der exothermen Zersetzung in Stickstoff T_{ZN} gemessen. Die ermittelten Temperaturen sind in Tabelle 1 enthalten. Als Verdampfungstemperatur $T_{\rm v}$ wurde die niedrigste Temperatur angegeben, bei der unter den angewandten Versuchsbedingungen der Gewichtsverlust, der durch die Verdampfung bedingt ist, erkennbar ist. Auch diese Tempera-

Abb. 1. Simultan-DTA-TG-Kurven von Anisol-2-azo-1,2-naphthol.

tur T_v hängt stark von den Versuchsbedingungen, insbesondere von Heizrate und Tiegelform ab.

 $T_{\rm v}$ ist insofern keine Stoffkonstante; sie dient aber zur Grob-Information über das Verdampfungsverhalten eines Rauchfarbstoffes und wird in technischen Spezifikationen [3] angegeben. Die Temperatur $T_{\rm v}$ wird im allgemeinen durch Aufbringen des Farbstoffes auf erhitztes Kupferblech, und Beobachten der ersten sichtbaren farbigen Dämpfe gemessen. Die thermogravimetrisch gemessenen Werte von $T_{\rm v}$ stimmen mit den so ermittelten befriedigend überein. Bei den thermogravimetrisch erhaltenen Temperaturen $T_{\rm v}$ haben die Rauchfarbstoffe einen Dampfdruck von 0.35 ± 0.28 mbar. Dieser Mittelwert resultiert aus Einzelwerten, die aus Dampfdruckkurven von 20 Rauchfarbstoffen berechnet wurden.

Die in Tabelle 1 angegebenen Siedetemperaturen $T_{\rm K}$ wurden aus den ermittelten Dampfdruck-Temperatur-Kurven berechnet, unter der Annahme, dass die im experimentell zugänglichen Temperaturbereich ermittelte Druck-Temperatur-Abhängigkeit der Form

$$\ln p = A - \frac{B}{T} \tag{1}$$

bis zur Siedetemperatur gültig ist. In den Fällen, in denen nur der Dampfdruck über der festen Phase gemessen werden konnte, wurde die Dampfdruck-Temperatur-Abhängigkeit unter Berücksichtigung der gemessenen Schmelzenthalpie und gegebenenfalls der ermittelten Kristallumwandlungsenthalpie berechnet. Der allgemeine Ausdruck für die Siedepunktberechnung lautet

$$T_{\rm K} = \frac{\Delta H_{\rm subl} - \Delta H_{\rm U} - \Delta H_{\rm F}}{R(A_{\rm F} - \ln p_{1033})} \tag{2}$$

Darin bedeuten

 $T_{\mathbf{K}}$ Siedetemperatur (K)

 $T_{\rm U}$ Kristallumwandlungstemperatur (K)

 $T_{\rm F}$ Schmelztemperatur (K)

 ΔH_{subl} Sublimationsenthalpie (J mol⁻¹)

- $\Delta H_{\rm U}$ Umwandlungsenthalpie (J mol⁻¹)
- $\Delta H_{\rm F}$ Schmelzenthalpie (J mol⁻¹)
- **R** Allgemeine Gaskonstante ($J \mod^{-1} K^{-1}$)
- A_F Koordinatenabschnitt der Dampfdruck-Temperatur-Beziehung (1) der festen Phase unterhalb der Kristallumwandlungstemperatur
- p_{1033} Dampfdruck bei 1033 mbar

Phasenänderungsenthalpien

Die Enthalpien von Kristallumwandlungen und Schmelzvorgängen wurden mittels Dynamischer Differenzkalorimetrie (DDK) gemessen [4]. Von dem Farbstoff 2-Phthalochinolin wurde so auch die Dehydratationsenthalpie bestimmt. Zur Kalibrierung wurden die Schmelzenthalpien von Indium verwendet. Die Resultate der Messungen sind in Tabelle 2 zusammengestellt.

Die Sublimationsenthalpien wurden aus den Dampfdruck-Temperatur-Abhängigkeiten (1) berechnet, indem die Grösse *B* aus Gleichung (1) mit der Gaskonstanten *R* multipliziert wurde. Beim Messen der Dampfdruckkurve über der festen Phase ergab sich so die Sublimationsenthalpie ΔH_{subl} , aus Dampfdruckmessungen über der flüssigen Phase die Verdampfungsenthalpie ΔH_{v} .

Aus Sublimations- und Schmelzenthalpien lassen sich durch die Beziehung

$$\Delta H_{\rm V} = \Delta H_{\rm subl} - \Delta H_{\rm F} \tag{3}$$

Verdampfungsenthalpien ΔH_v berechnen. Die erhaltenen Werte sind in Tabelle 2 zusammengestellt.

Dampfdruck-Temperatur-Funktionen

Die Messung der Abhängigkeit des Dampfdruckes von der Temperatur erfolgte thermogravimetrisch [5] nach der Knudsen-Effusionsmethode [6,7], die für niedrige Dampfdrücke zwischen 10° und 10^{-7} mbar brauchbar ist. Dabei wurde die Geschwindigkeit, mit der die gasförmigen Moleküle die Öffnung einer Effusionszelle passieren, gravimetrisch bei vorwählbarer, konstanter Temperatur gemessen. Die Knudsenzelle befand sich auf der Thermowaage in einem Vakuum von ca. 10^{-5} mbar. Aus der Massenänderung $\Delta m/\Delta t$ lässt sich der Dampfdruck p bei Kenntnis des Diffusionszellenöffnungsquerschnittes q, der Molmasse M und der Versuchstemperatur T nach der idealen Knudsen-Gleichung

$$p = \frac{\Delta m}{\Delta t} \frac{1}{q} \sqrt{\left(\frac{2\pi RT}{M}\right)} \tag{4}$$

berechnen. Die Abhängigkeit des Dampfdruckes von der Temperatur ist für kleine Temperaturintervalle in der Form (1) angebbar. Organische Verbindungen wie Anthracen, *p*-Phenacetin und Benzoesäure gehorchen der Beziehung (1) hinreichend [5,8,9]. Abbildung 2 zeigt die Dampfdruckkurve in Form der Gleichung (1) von Anisol-2-azo-1,2-naphthol. Aus Tabelle 2 sind die Koeffizienten A und B der Dampfdruckkurve für 20 Rauchfarbstoffe angegeben, einschliesslich ihrer Standardabweichungen. Auch der Temperaturbereich, in dem die Dampfdruckkurve gemessen wurde, ist aus Tabelle 2 zu ersehen.

Aus der Literatur [12] sind Sublimationsenthalpien von 1-Aminoanthrachinon (120 kJ mol⁻¹; 25 °C) und Auramin (460,5 J g⁻¹) bekannt. Diese Werte liegen geringfügig über den Werten dieser Arbeit.

Erg	bnisse der thermoar	nalytischen	n Messu	ngen vor	n Phasen	übergar	igsenthalpien u	ind spezifi	ischen W	ärmen von	Rauchfar	rbstoffe	а	
Гfd	Rauchfarbstoff	Mol-	$\Delta H_{\rm U}$	$\Delta H_{\rm F}$	ΔH_{subl}	ΔH_{v}	Dampfdruck p	(mbar)		Spezifisch	e Wärme	$(J g^{-1})$	K ⁻¹)	$\Delta H_{\rm RB}$
Ľ.		masse	$(J g^{-1})$	(J g ⁻¹)	$(J g^{-1})$	(J g ⁻¹)	TempBereich	$h = d \ln h$	-B/T	$c_{\rm p} = a + b$	T			(kJ g ⁻¹)
							(°C)	V	В	Fest	ш	lüssig		
										a b	a			
	1-Aminoanthra-	223, 233		126,98	521,0	394,2	95-120	28,35	13992	-0,074 0	,00476	3,71	-0,0045	1,12
	chinon			<u>±</u> 2,85	± 17,5	± 17,5		$\pm 1,24$	±472					
ы	1-Amino-2-methyl-	237, 260	31,61	81,68	525,2	411,8	87-115	31,21	14990	0,462 0	,00269	1,24	0,0023	1,31
	anthrachinon		±0,30	$\pm 0,89$	± 30,8	<u>±</u> 30,8		<u>±</u> 2,35	± 884					
ŝ	1-Amino-2-brom-	407, 274	ł	95,35	410,0	311,1	145-165	37,29	20081	0,158 0	- 70200,	- 1,97	0,0062	1,11
	4-p-toluidino-			$\pm 3,23$	土 14,7	$\pm 14,7$		$\pm 1,67$	± 726					
	anthrachinon													
4	1-Amino-2-methyl-	342, 401	I	120,71	415,3	291,8	145-162	29,48	17103	0,270 0	,00378 -	-5,13	0,012	2,17
	4-p-toluidino-			± 2,07	± 3,5	± 3,5		±0,33	± 141					
	anthrachinon													
S	Anisol-2-azo-	278, 313	I	100,82	511,6	410,7	102-115	35,95	17128	-0,023 0	,00478	5,67	- 0,0079	1,04
	1,2-naphthol			± 3,59	± 7,9	± 7,9		<u>± 0,69</u>	± 261					
9	p-Diethylamino-	253, 350	1	67,77	360,8	293,3	57-80	23,77	10999	- 3,493 0	,0170	4,01	- 0,0001	2,23
	azobenzol			$\pm 0,47$	\pm 11,4	$\pm 11,4$		$\pm 1,03$	<u>±</u> 352					•.
2	1,4-Diamino-	238, 248	20,15	83,08	430,2	327,0	105-130	22,69	12335	0,164 0	,00323	3,61	-0,0038	1,11
	anthrachinon		± 9,11	± 3,41	± 40,7	±40,7		± 2,96	±1169					
×	1,5-Diamino-	238, 248	ł	173,81	497,8	324,0	132-154	25,22	14248	0,375 0	,00332	1,65	-0,0002	1,56
	anthrachinon			土 2,77	± 20,1	$\pm 20,1$		$\pm 1,39$	± 580					
6	1,4-Diisobutyl-	350, 465	I	21,60	221,4	199,7	95-115	15,37	9337	-0,674 0	,00712	4,64	-0,0036	1,78
	aminoanthra-			± 2,48	±6,0	±6,0		± 0,69	<u>±</u> 258					
	chinon													
10	1,4-Di-n-butyl	350, 465	18,8	60,5	411,5	332,1	116–125	26,30	14001	-1,033 0	,00846	1,52	0,0017	1,38
	aminoanthra-		$\pm 0,4$	$\pm 1,1$	± 6,6	±6,6		$\pm 0,69$	±276					
	chinon													

TABELLE 2

11	1,4-Dimethyl-	266, 302	I	82,88	570,0	484,8	112-140	36,47	18255	1,247	0,0019	3,86	-0,0033	1.26
	aminoanthra-			± 3,57	$\pm 14,6$	$\pm 14,6$		$\pm 1,18$	±470					
	chinon													
12	1,4-Dihydroxi-	240, 217	23,31	75,39	426,3	327,6	80 - 100	26,06	12318	-0,545	0,00398	6,60	- 0.0096	0.89
	anthrachinon		± 0,37	$\pm 1,00$	± 17,9	$\pm 17,9$		$\pm 1,45$	± 524					
13	2-Hydroxi-1-	248, 287	I	74,71	470,0	395,1	77-101	31,17	14036	-0,376	0,00518	2,67	- 0,0025	0.94
	phenyl-azo-			± 4,75	± 21,7	± 21,7		± 1,80	± 655					
	naphthalin													
14	2-Hydroxi-4-p-	329, 359	3,58	74,17	367,4	289,7	76-105	31,04	14553	0,102	0,00646	4,34	0,0055	1.09
	toluidino-		±0,58	<u>±</u> 1,64	± 23,1	± 23,1		± 2,50	± 910					
	anthrachinon								I					
15	1-Methylamino-	237, 260	ł	111,86	488,5	376,8	90-110	29,62	13944	0,107	0,00480	7.68	-0.012	06.0
	anthrachinon			$\pm 1,73$	$\pm 14,8$	± 14,8		± 1,13	± 424					
16	1-Methylamino-	342, 401	1	68,43	445,1	376,8	145-161	28,57	15514	0,058	0,00299	7,63	-0.012	0,90
	4-m-toluidino-			± 2,25	±13,7	$\pm 13,7$		$\pm 1,34$	±568					
	anthrachinon													
17	1-Methylamino-4-	342, 401	1	87,38	449,5	362,1	130-153	35,00	18514	0,035	0,00378	5,48	-0,072	1,00
	<i>p</i> -toluidino-			± 6,21	± 11,4	± 11, 4		±1,12	±468				۰.	
	anthrachinon													
18	2-Phthalochinolin	291, 309	43,83	38,28	387,7	349,4	100-135	25,85	13396	0,051	0,00331	7,94	-0,011	1,30
			±1,09	±4,18	± 20,9	± 20,9		$\pm 1,84$	± 719					
19	Phenyl-1-azo-	278, 316	ł	94,86	283,5	188,6	67-91	18,32	9496	-0,629	0,00529	4,20	-0,0030	1.78
	4,3-methyl-1-			$\pm 1,04$	± 7,5	± 7,5		$\pm 0,72$	± 253					
	phenyl-5-hydroxi-													
	pyrazol													
8	p, p'-Tetramethyl-	303, 838	ł	م ا	428,2	م ا	120–135	30,00	15655	0,061	0,00467	م	م ا	م ا
	diaminodi-				± 21,4			±1,96	± 783					
	pnenyi-ketonumin-													
	II A II OCIIIOLIA													

^a Dehydratationsenthalpie. ^b Messung oder Berechnung wegen Zersekung nicht möglich.

37

ļ

Spezifische Wärmen

Die spezifische Wärme bei konstantem Druck c_p wurde von 20 Rauchfarbstoffen mittels DDK als Funktion der Temperatur ermittelt. Die Grundlagen des Messverfahrens wurden von O'Neill [10] angegeben. In folgenden Temperaturbereichen wurde die c_p-T -Funktion gemessen:

(a) Von 25°C bis zur Kristallumwandlungs- oder Schmelztemperatur;

(b) Von der Schmelztemperatur bis zum Beginn der Farbstoffzersetzung. Die c_p -T-Funktionen wurden in der Form

$$c_{\rm p} = a + bT({\rm J} {\rm g}^{-1} {\rm K}^{-1})$$
(5)

dargestellt. Die Werte der Koeffizienten a und b sind in Tabelle 2 sowohl für die festen als auch für die flüssigen Farbstoffe zusammengestellt.

In den kleinen Temperaturbereichen zwischen Kristallumwandlungs- und Schmelztemperaturen waren die c_p -T-Funktionen experimentell nicht zu ermitteln. Für die Berechnungen der Rauchbildungsenthalpie ΔH_{RB} wurden die entsprechenden Koeffizienten *a* als Mittelwert aus $a_{flüss}$ und a_{fest} geschätzt

und die Koeffizienten *b* der Phase unter der Kristallumwandlungstemperatur verwendet. Wegen der nur kleinen Temperaturbereiche, in denen die Hochtemperaturphasen existieren, sind die dadurch bedingten Fehler bei der Berechnung von $\Delta H_{\rm RB}$ vernachlässigbar gering.

Die Resultate der c_p -Messungen der flüssigen Farbstoffe schwankten stärker als methodisch bedingt, da die Dampfdrucke bei diesen Temperaturen bereits so erheblich sind, dass die Verdampfung infolge des unterschiedlichen Abschlusses der Al-Kapseln die c_p -Messwerte beeinflusste. Für eine Berechnung der Rauchbildungsenthalpie sind die Resultate noch ausreichend sicher messbar.

Rauchbildungsenthalpie

Zur Betrachtung der Energiebilanz von pyrotechnischen Rauchsätzen benötigt man die Kenntnis der Energie, die erforderlich ist, um eine bestimmte Menge eines Rauchfarbstoffes vom festen Zustand bei Raumtemperatur in den Gaszustand bei Siedetemperatur zu bringen. Dieser Wert soll als Rauchbildungsenthalpie ΔH_{RB} bezeichnet werden, wenn der Rauchbildungsvorgang bei konstantem Druck durchgeführt wird. Der Betrag von ΔH_{RB} setzt sich aus dem durch die spezifische Wärme bedingten Anteil und dem durch Phasenänderungsenthalpien, wie Kristallumwandlungs-, Schmelzund Verdampfungsenthalpie bedingten Anteil wie folgt zusammen

$$\Delta H_{\rm RB} = \int_{298}^{T_{\rm U}} c_{\rm p1} \mathrm{d}T + \Delta H_{\rm U} + \int_{T_{\rm U}}^{T_{\rm F}} c_{\rm p2} \mathrm{d}T + \Delta H_{\rm F} + \int_{T_{\rm F}}^{T_{\rm K}} c_{\rm p3} \mathrm{d}T + \Delta H_{\rm V} \tag{6}$$

Führt man die c_p -T-Funktion nach (5) ein und integriert, so ergibt sich

$$\Delta H_{\rm RB} = (T_{\rm U} - 298)a_1 + (T_{\rm U}^2 - 298^2)\frac{b_1}{2} + \Delta H_{\rm U} + (T_{\rm F} - T_{\rm U})a_2 + (T_{\rm F}^2 - T_{\rm U}^2)\frac{b_2}{2} + \Delta H_{\rm F} + (T_{\rm K} - T_{\rm F})a_3 + (T_{\rm K}^2 - T_{\rm F}^2)\frac{b_3}{2} + \Delta H_{\rm V}$$
(7)

Darin sind a_1 und b_1 die Koeffizienten aus (5) für die feste Tieftemperaturphase, a_2 und b_2 die der festen Hochtemperaturphase und a_3 und b_3 die der flüssigen Phase.

Die nach (7) berechneten Werte von ΔH_{RB} sind aus Tabelle 2 zu entnehmen.

Die Wahl der Siedetemperatur $T_{\rm K}$ als obere Integrationsgrenze in Gleichung (6) ermöglicht es, die Rauchbildungsenthalpie als Kenngrösse des Rauchfarbstoffes anzugeben. Bei Farbstoffen, für die eine sehr hohe Siedetemperatur ($T_{\rm K} > 800$ K) berechnet wurden, ist diese Wahl jedoch problematisch. Für die Berechnung der Energiebilanz von Rauchsätzen ist es in diesem Fall sinnvoller, diejenige Temperatur als obere Integrationsgrenze zu wählen, die beim Schwelen des Heizbettes oder des Rauchsatzes gemessen wurde.

1									
Lfd.	Chem. Zusammen-	Tempera-	Rauchbild	ungsenthalpie	Heizbetter	nenthalpie	Inertstoffer-	Enthalpie-	Energiebilanz
Zr.	setzung der Rauchsätze (%)	turbasis (K)	(kJ g ⁻¹)	Satzanteil (kJ g ⁻¹)	$(kJ g^{-1})$	Satzanteil (kJ g ⁻¹)	wärmungsenthalpie (kJ g ⁻¹) Satzanteil (kJ g ⁻¹)	differenz (kJ g ⁻¹)	(%)
	24 KClO ₃ 30 Milchzucker 46 <i>p</i> -Diethvl-	T _v = 800	2.23	1.03	1,96	1,06		0.03	
	aminoazo- benzol	$T_{\rm HB} = 689$	1,78	0,82				0,24	22
3	31 KCIO ₃ 25 Milchzucker				2,02	1,13	·	0,74	65
	44 1,4-Dihydroxi- anthrachinon	$T_{\rm K} = 731$ $T_{\rm HB} = 769$	0,89 0,87	0,39 0,38				0,75	66
Э	25 KClO ₃ 25 Milchzucker	$(T_{\rm HB} = 729)$			2,00	1,00		0,54	54
	48 2-Hydroxi-1- phenylazo- naphthalin	$T_{\rm K} = 634$	0,94	0,45					
	2 Kaolinit						0,33 0,01		
4	28 KClO ₃ 28 Milchzucker	$(T_{\rm HB} = 729)$			2,00	1,12		0,71	63
	44 2-Hydroxi-1- phenylazo- naphthalin	$T_{\rm K} = 634$	0,94	0,41					

TABELLE 3 Energiebilanz pyrotechnischer Rauchsätze

5	$(T_{\rm HB} = 734)$			2,01	0,98			0,53	54
$T_{\rm K} = 699$		06'0	0,45						
						0,42	00'0		
				2,01	0,98			0,42	4
$T_{\rm K} = 918$ 1, $T_{\rm m} = 737$ 1 (11	0,56 0.57					0.46	.4
24 7 8 8 1		5				0,74 0,47	0,01 0,00	2	r
				0,796	0,45				
$(T_{\rm HB} = 703)$									
$T_{\rm K} = 634$ 0,96	0,92		0,25					0,05	1
$(T_{\rm K} = 711)$ 1,38	1,38		0,12						
			Σ0,38			0,33	0,02		
$(T_{\rm HB} = 703)$				0,796	0,45				
$T_{\rm K} = 634 \qquad 0.94$	0,94		0,25					0,10	
$(T_{\rm K} = 731)$ 0,8	0,8	6	0,08						
			Σ0,33			0,33	0,02		

Į

ENERGIEBILANZ VON RAUCHSÄTZEN

Zum Verständnis der Vorgänge, die beim Abschwelen eines Rauchsatzes vor sich gehen, ist die Kenntnis der Energiebilanz erforderlich. Dazu ist ein Vergleich von der vom Rauchfarbstoff benötigten Energie mit der vom Heizbett zur Verfügung gestellten Zersetzungswärme notwendig.

Als Enthalpie, die das Heizbett bei der exothermen Zersetzungsreaktion liefert, wird die thermoanalytisch messbare Zersetzungsenthalpie betrachtet. Da der Reaktionsablauf kompliziert ist, schwanken die Werte der Zersetzungsenthalpie erheblich. Trotzdem sind die Werte für die Betrachtung der Energiebilanz sinnvoll und ausreichend sicher. Das am häufigsten verwendete Heizbett von Rauchsätzen ist ein Gemisch aus Kaliumchlorat und Milchzucker. Die Zersetzungswärme $\Delta H_{\rm HB}$ von derartigen Gemischen wurde durch DDK gemessen. Sie lässt sich als Funktion der chemischen Zusammensetzung x_i ($0 < x_i < 1$; $i = \text{KClO}_3$) als Regression 2. Grades wie folgt angeben

$$\Delta H_{\rm HB} = 1190 + 2674x_i - 2074x_i^2 \qquad \text{für } 0.43 < x_i < 0.65 \tag{8}$$

Berücksichtigt man die prozentuale Zusammensetzung von Rauchsätzen, so lässt sich der Energieanteil des Heizbettes unter Benutzung von (8) und der vom Farbstoff benötigte unter Benutzung von (7) berechnen. Die Differenz

$$\Delta H_{\rm HB} - \Delta H_{\rm RB} = \Delta H_{\rm EB} \tag{9}$$

liefert die Energiebilanz, die zweckmässigerweise als Prozentsatz von ΔH_{HB} angegeben wird.

Bei der Betrachtung von Farbstoffen, bei denen sich sehr hohe Siedetemperaturen aus den Dampfdruck-Kurven berechnen, ist es sinnvoller die maximale Schweltemperatur des Heizbettes statt der Siedetemperatur in (7) heranzuziehen. Für Heizbetten auf der Basis KClO₃-Milchzucker sind diese Temperaturen $T_{\rm HB}$ unter praxisnahen Bedingungen in Abhängigkeit von der chemischen Zusammensetzung x_i gemessen worden [11].

Die Funktion ist im interessierenden Konzentrationsbereich praktisch linear und lässt sich wie folgt angeben

$$T_{\rm HB}({\rm K}) = 363,3 + 732,1x_i$$
 für $0,4 < x_i < 0,7; i = {\rm KClO}_3$ (10)

Noch bessere Energiebilanzwerte lassen sich angeben, wenn man die Maximaltemperatur $T_{\rm RS}$ berücksichtigt, die sich beim Abschwelen des Rauchsatzes messen lassen. Diese Temperaturen $T_{\rm RS}$ liegen ca. 70 K unter den Schweltemperaturen [11], die sich nach (10) ergeben. Der für die Rauchbildung erforderliche Energieanteil erniedrigt sich so um etwa 5%.

In Tabelle 3 sind Energiebilanzen einiger üblicher Rauchsätze berechnet. Die Sätze sind generell überbilanziert, da erfahrungsgemäss ein Teil des Rauchfarbstoffes (5 bis 20% nach [11]) beim Abschwelen zersetzt und dafür Energie verbraucht wird [12].

LITERATUR

- 1 Colour Index, 3rd edn., The Society of Dyers and Colourists, Bradford, U.K., 1971.
- 2 H.G. McAdie und H.G. Wiedemann (Herausg.), Thermal Analysis, Vol. 1, 3rd ICTA, Davos, Birkhaeuser Verlag, Basel, 1972, S. 591–608.
- 3 Lieferbedingungen des BWB für Rauchfarbstoffe, VTL 1370-001.
- 4 W. Perron, in I. Buzás (Herausg.), Thermal Analysis, Vol. 3, 4th ICTA. Budapest, Akadémiai Kiadó, Budapest, 1975, S. 1073-1083.
- 5 H.G. Wiedemann, Thermochim. Acta, 3 (1972) 355.
- 6 M. Knudsen, Am. Phys., 28 (1909) 999.
- 7 M. Knudsen, Am. Phys., 29 (1909) 179.
- 8 S. Klosky, L.P.L. Woo und P.J. Flanigan, J. Am. Chem. Soc., 49 (1927) 1280.
- 9 J.N.S. Cramer, Recl. Trav. Chim., Pays-Bas, 62 (1943) 606.
- 10 M.J. O'Neill, Anal. Chem., 38 (1966) 1331.
- 11 U. Krone, Systematische Untersuchung an Rauch- und Nebelsätzen, Nico-Pyrotechnik, Trittau, 1969.
- 12 H. Ellern, Military and Civilian Pyrotechnics, Chemical Publishing Company Inc., New York, 1968.