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ABSTRACT 

This article describes a general method for filtering noise from thermograms which uses 
the previously determined autocorrelation function of the noise produced by the calorimeter 
apparatus together with an estimate of the second derivative of the signal being processed. 
The method is applied to a standard Calvet microcalorimeter, the autocorrelation function of 
whose noise is shown, and the variable number of points required by the filter in this case is 
plotted against a convenient function of the second derivative of the signal. Comparison of 
deconvolved calorimeter output signals with and without previous filtering shows the filter to 
function as desired. 

INTRODUCTION 

Recent articles [1,2] have reported the application of deconvolution tech- 
niques to thermograms for separating the true thermal reaction signal from 
distortion introduced by the calorimeter system. Such techniques are particu- 
larly sensitive to noise in the input signal. The present article describes a 
digital filter designed to eliminate this noise. 
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Fig. 1. Block diagram of the calorimeter system. The signal y,,(k) is the measured output 
signal contaminated with additive noise n(k). 
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We assume that the noise, n(k), is additive, stationary, ergodic and of 
mean value zero. The noisy signal y,( k) = u,,( kT) sampled from the calorim- 
eter output u,(t) at some suitable frequency l/T is, therefore, given by 

x,(k) =y(k) + n(k) (1) 

where y( k) is the desired noiseless signal (Fig. l), and since 

E[n(k)] =O,Vk (2) 

then 

E[x,(k)] =.J@), vk (3) 

The variance a: of y,( k) is, accordingly, given by 

e2 =E( [y,(k) -#)j2) = E( [n(k)12} = k,(O) n (4) 

where R,, is the autocorrelation function of the noise, defined by 

K,,(k)=E[n(+r(l+k)l (5) 

Since the noise is assumed to be stationary and ergodic, R,,(k) is given [3,4] 
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Fig. 2. Normalized mean autocorrelation function of the noise produced by a Calvet 
microcalorimeter. 



by 

R,,(k) =~$n-ll~ 5 [n(r)n(r+ k)] 
I=1 
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(6) 

of course, if a,,* is comparable to y*(k), the noise completely obliterates the 
signal to be measured. 

THE FILTER 

To estimate y(k) we use the smoothing function 
k+P 

P(k) =A c Y,(l) 
I=k-P 

(7) 

The number of points, P, over which this average is taken should be such as 
to minimize the mean squared error u,‘(k) given by 

0%) = E{ [F(k) -y(k)]*) = E({J(k) -E[P(k)l}‘, 

+ (m(k)1 -Y(W2 

I 

c 

Hwt ::::w ::e :::* 
+ Q 

: 
P 

Ratio R &03/(y l 7Ck3)2 - 

(8) 

Fig. 3. Number of points required for the filter plotted against R,,(O)/[y”(k)]* 
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The second of the two terms on the right-hand side is the square of the mean 
error 6(k) = E [ jj( k) -y(k)], which may be approximated (see Appendix) by 

b(k) = ;P(P + l)y”( k) (9) 

The first term is the variance of y( k), a*, given by 

o’=E({E(k)-E[J(k)]}*) = 1 
(2P + 1)’ 

or, in terms of the autocorrelation function of n(k), by 

2 
= ~JLn(O) + 

2 
(J E 

(2P + l)* j=l 
jR,,(2P + 1 -j) 

, (10) 

Dividing both sides of eqn. (8) by R,,(O) so as to introduce the normalized 
autocorrelation function f,,,(k) = R,,( k)/R,,(O) in the term corresponding 
to u*, we find that the number of points, P, should be such as to minimize 
the function 

E=&P’(P+ 1) 2 [Y”Wl’ 1 

R,, (0) +2p+1 
1 + 

& ;jf,,(2P + 1-d (12) 
J=l 1 
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Fig. 4. True heat signal (A) together with the deconvolved signal (B) obtained from the 
measured signal before filtering. 
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In practical applications with a given calorimeter, the computer program 
implementing the filter would have access to a pre-calculated table giving the 
value of P as y”( k) varies. For a given point k, P would be looked up in this 
table after estimating y”( k) over a short time interval. 

EXPERIMENTAL RESULTS AND CONCLUSIONS 

The filter described above was calculated for a standard Calvet conduc- 
tion microcalorimeter with a cell volume of 10 cm3. A mean autocorrelation 
function for the calorimeter noise was estimated by averaging the results of 
applying eqn. (6) to each of a number of calorimeter output signals recorded 
for different constant inputs (Fig. 2). On fitting the function 

f,,(t) = A, + A,t + (1 - A,) edAzr (13) 

to the initial 13 s of this empirical autocorrelation function, the values 
A, = 0.44498, A, = -0.01527 and A, = 1.4205 were obtained. In Fig. 3 the 

value of P which minimizes E in eqn. (12) is plotted against R,,(O)/[y”( k)J2. 
To test the method, a known heat signal was generated electrically within 

the calorimeter and the measured output signal deconvolved both with and 
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Fig. 5. True heat signal (A) together with the deconvolved signal (B) obtained after filtering 
the measured signal by the method described in this article. 
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without previous filtering (Figs. 5 and 4, respectively). The second derivative 
of the signal was estimated at each point by fitting a third-degree polynomial 
to the measured output signal at that point. Deconvolution was carried out 
using the Z-transform [l]. It is clear from Figs. 4 and 5 that the use of the 
filter results in a significant improvement in the reconstruction of the heat 
signal. 
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APPENDIX 

The Taylor expansion of y about y(k) is 

~(I)=l’(k)+(l-k)y’(k)+:(l-k)*y”(k)+~(I-k)~y”’(k)+. 

If derivatives of order four or higher are ignored (calorimeter 
normally vary quite slowly), then 

k+P 

W(k)) =A c y(l) 
I=k-P 

(2P+l)y(k)+y’(k) ‘5’ (I-k)* 
I=k-P 

k+P k+P 

++y”(k) c (6k)*+;y”‘(k) c (I-k)3 1 

I=k-P I=k-P 1 

Since 

k+P k+P 

c (I-k)= c (I-k)3=0 
I=k-P I=k-P 

and 
A+P 

c (I-k)*=$P(P+1)(2P+l) 
I=A-P 

then 

. (Al) 
signals 

642) 

643) 

(A4) h=E[.j(k)] -y(k)=iP(P+l)y”(k) 


