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ABSTRACT

The molar heat capacities of five argyrodite compounds have been measured in the
temperature range, 2-500 K by adiabatic and differential scanning calorimetry. The heat
capacity of two other chalcogenides, Cu,PS, and Ag,PS,, has been determined between 100
and 500 K. The Cu PS;HAL (HAL = Cl, Br, I) compounds show structural phase transitions
at 241, 257 and 270 K, respectively. In CuPS;Cl a second new phase transition has been
detected at 165 K. These phase transformations have been characterized thermodynamically.
The thermodynamic standard values of entropy, enthalpy and Gibbs free energy at 298.15 K
were calculated from the specific heat data and the heat of formation was computed from the
results of vapour pressure measurements and specific heat data.

INTRODUCTION

Compounds of the general formula ME,PS;HAL (ME = Ag, Cu; HAL =
Cl, Br, I) and ME,PS; are members of a new family of acentric structures
[1], denoted argyodites. These materials have recently attracted much interest
because of some unique physical and chemical properties which have been
reviewed in ref. 2. The argyrodites can built up with a vast range of different
chemical substitutions. Their incomplete occupancy of certain cation sites
leads to ionic conductivity in various compounds and to the occurrence of
order—disorder phenomena and crystallographic phase transitions [3].

The general formula of argyrodites is written as: A7;_,_,, B *X3Z Y~
where m = oxidation number of A atoms, being Cu*, Ag*, Cd?*, Hg?*,
n = oxidation number of B atoms, being Ga**, Si**, Ge**, P°*, As’t,
x = 6 — y = number of X atoms per B atom with X2~ = §2~, Se?~, Te?~ and
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y =number of Y atoms per B atom with Y =CI7, Br', [, for 0 <y < 1.
The compounds have a common, cubic, high temperature phase of overall

symmetry F43m generally with 4 formula units per unit cell. Characteristic
of the architecture of all argyrodites is the building unit of interpenetrating,
centered and distorted anion icosahedra which form a tetrahedrally close-
packed sublattice. The icosahedron is constructed from 20 triangular surfaces
in such a manner that the resulting geometry has three fivefold rotational
axes neglecting the icosahedral deformation. The anion sublattice is similar
to that formed by the metal ions in the Laves phase of MgCu,. The metal
cations only occupy one half of their cubic lattice sites and reside in various
coordinates as described in ref. 1. Twenty four metal cations (e.g., Cu PS;Br,
Z = 4) are distributed randomly among the 48 equivalent lattice sites {1]. The
B ions are coordinated almost tetrahedrally by four anions. The free lattice
sites in conjunction with the icosahedral structure of the anions are common
features of the argyrodite structure which favours ionic conductivity.

At low temperatures the high temperature (a-phase) transforms into
various ordered low temperature modifications ( 8-phase) which is mostly of
monoclinic symmetry. It is not yet clear whether these transitions are of first
or second order type. The arrangement of the A cations in the low tempera-
ture structure is ordered in various ways, depending on composition. The
ordering is a direct result of the splitting of the cubic lattice sites into non
equivalent positions due to the distortion of the cell at the phase transition.

The initial aim of this paper was to establish the basic thermodynamic
functions of the ME,PS;HAL compounds. These data were required to
calculate the thermal equilibrium equations in the gas-phase in order to
optimize the conditions of crystal growth by chemical vapour transport
(CVT) [4].

This paper reports on the first measurements of the specific heat of six
copper and silver argyrodites. From these measurements the thermodynamic
standard values as function of temperature have been calculated over a wide
temperature range (2 < 7 < 500 K) and the heat of formation at 298.15 K
derived. New crystallographic phase transitions were found. The former
detected structural transformations in the three Cu-argyrodites are char-
acterized quantitatively for the first time by their thermal parameters.
Finally the anomalous temperature behaviour of the heat capacity at very
low temperatures is discussed with regard to the tunnelling processes of Cu
anions by analogy with the tunnelling in amorphous materials.

EXPERIMENTAL
All samples were synthesized by reacting stoichiometric amounts of high

purity elements in evacuated and sealed quartz ampoules for 6 days at
600°C. The resulting products were identical to those investigated previously
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[1,2]. Single crystals with a size from 10 to 500 mm® and polycrystalline
pressed samples were used for the experiments.

The specific heat capacity at low temperatures (1.5-100 K) has been
measured with an adiabatic calorimeter [5]. The values above 100 K were
determined with a differential scanning calorimeter (Perkin-Elmer, DSC-2).
The adiabatic measurements, were carried out using the well known Nernst
method, by means of an automatic process-control and data acquisition
system [5] in conjunction with a highly reproducible, low heat capacity
sample holder [6]. The investigated samples typically had a weight of 0.6 to
1.5 g. Thus the sample holder heat capacity amounted to 10-40%, depending
on temperature and sample weight. The overall calorimetric error of the heat
capacity determinations is estimated to be less than 1.2%. Systematic errors
have been ruled out by measuring standard samples of copper and sapphire
[5]

In the DSC-2 calorimeter, a twin cell, heat-flow instrument the samples
have been encapsulated into the standard pans of aluminium and continu-
ously flushed with a stream of pure and dried helium gas (or argon above
350 K). The heater block is thermalized in the low temperature range
(100-350 K) by a temperature-controlled liquid-nitrogen continuous flow
cryostat permitting temperature to be controlled to within +0.05 K [7]. The
data on the specific heat were computed by comparison with standard
samples of sapphire. The temperature error does not exceed +0.15°C. The
absolute calorimetric error of the specific heat curve is estimated to be 1.5%.

RESULTS

The experimental molar heat capacities C, of the CusPS;Hal-compounds
(Hal = Cl, Br, 1) are represented as function of temperature in Fig. 1, in a
double logarithmic plot. These data refer to molar weights of 607.99, 652.44
and 699.43 respectively. In the same plot the results for Ag,PS;Cl and
Ag,PS; are shown. For the sake of clarity only smoothed curves obtained
from the best fit to the about 300 individual experimental points below 100
K are plotted. At temperatures above 100 K the data, taken by the DSC-2,
were digitized every degree, but are also shown as a smoothed line in Fig. 1.
The low temperature results (1-10 K) are depicted in more detail in Fig. 2 in
terms of C,/T vs. T2. The specific heat C,(T) above 100 K of three further
argyrodites are plotted in Fig. 3. This representation includes three samples
Cu,PS,, Ag,PS, and Cu,PS; for which the specific heat has been de-
termined only at temperatures 7 > 100 K. Anomalous heat capacities or
phase transitions have been observed only for the three Copper argyrodites,
Cu¢PS;Hal (Hal = Cl, Br, I) and will be analyzed below.

In order to represent our specific heat capacity results quantitatively, we
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Specitic Heat C, [J Mol 'K™]
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0 [y 100 1000
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Fig. 1. Specific heat as function of temperature in double-logarithmic plot: ( ) CugPS,Cl
(lower curve); (------ ) CugPS,Br; (—---) Cu PSsI; (---- -« ) Ag,PS;; (———) AgPS;Cl
(upper curve).

carried out fits of the measured data points using the general formulae

C,= gla,.- Tor C,= ;lb,.(ln T) (1)

The standard deviation from the polynomial fit was generally less than 0.7%.
Selected values of the resulting smoothed C, data are listed in Table 1.

2K 3K 4K 5K

=

" Heat capacity Cy/T [J Mot® K]

Temperature T ( Kzl

F;g. 2. Heat capacity G /T vs. T? at temperatures below 6 K for: (X) CulcPS;CL (O)
Cu¢PS;Br; (O) CugPS,I; (+) Ag,PS;; (®) AgPS,ClL
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Fig. 3. Specific heats at T>100 K for: (--~) Ag,PSg; (------ ) AgPS;Cl; (------ ) Cu,PS;.

( ) Ag,PS, (upper curve); ( ) Cu,;PS, (lower curve). The two curves for Ag,PS,
and Cu,PS, have been multiplied by a factror of two for representation on the same diagram.

Above 300 K the temperature dependences of the specific heats are linear
and therefore are described by

C,=A+B-T (2)

The values of 4 and B are tabulated in Table 2.

The low temperature limiting Debye temperatures §, are calculated from
the formula C, = (127*/5) Nkn (T /), for T < 7K, where N is Avogadro’s
number, k£ denotes the Boltzmann constant and »n is the number of atoms
per molecular unit (see insert Fig. 2). Table 2 contains the values which we
computed for 6,.

DISCUSSION
Heat capacity of the lattices

The lattice heat capacities of the investigated samples (Figs. 1 and 3)
behave rather normally. This becomes evident on inspection of the tempera-

TABLE 2

Debye temperatures 6, (T — 0) for some argyrodites and the coefficients A and B repre-
senting the high temperature specific heat (7 > 280 K) by eqn. (2)

CuPS,Cl Cu,PS;Br Cu,PS,I AgcPS,Cl Ag,PS, Cu,PS; Cu,PS, Ag,PS,
8, 269 232 204 93 161 -

A 30524 290.23 298.08 278.57 238.0 23436 161.18 129.14
B 0.04762  0.0670 0.04167 0.1704 0.4010 0.3653  0.09695  0.2284
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ture dependence of the Debye temperature 6(7T'), as deduced from our C,
data. The continuous increase of the heat capacities at high temperatures
(T > 200 K) indicates the occurrence of anharmonic lattice vibrations.

At high temperatures (7 > 8) the specific heats reach the high temperature
limiting values expected by the Dulong—Petit law and the heat capacities of
the MEPS;Hal-compounds have identical values, being approximately 325 J
mol~! K~ as can be seen in Figs. 1-4. Similarly, the expected values of
C,=200J mol~! K™ for Cu,PS, and Ag,PS, agree with our experiments.
The specific heat C, of the two ME,PS; (ME = Ag, Cu) compounds,
however, exceeds the expected high temperature limiting C, value of 350 J
mol ! K~ strongly (Fig. 3). The strong linear increase of C,(T) is usually
an indication of strong anharmonicity. At the present time, the origin of this
unusual behaviour of C,(T) in Ag,PS¢ and Cu,PS; is not clear.

At temperatures below 100 K, as expected, the molar heat capacities differ
considerably. This difference is explained qualitatively by the different
molecular masses of the components. It is evident that the heavier Ag atoms
in the Ag compounds, Ag,PS; and Ag.PS;Cl lead to a lower Debye
temperature, 4, than that found for the Cu compounds (see Fig. 2). Simi-
larly, in the Cu,PS;Hal the increase of mass of the halogen atom (going
from Cl to I) gives rise to a systematic increase of the C,(T) curve as
function of temperature and a corresponding decrease of 8, respectively (see
Fig. 2). The influence of molecular mass in these isotropic structures is best
expressed by §, as can be seen in Table 1.

Both, Figs. 1 and 2, reveal an anomalous specific heat at low temper-
atures, clearly visible below 10 K. In this temperature region a 7°-depen-
dence (Debye’s law) for insulating materials is expected.

However, there is evidence of a clear linear contribution to the specific
heat of the Cl- and Br-compounds, which cannot be explained in terms of an
electronic contribution. Similar “quasi-linear” temperature behaviour of the
specific heat at low temperatures has been reported for some ionic conduc-
tors recently [8—10]. It was proposed that the excess heat capacity originates
from a broad spectrum of localized low energy excitations. The phenomeno-
logical model is based on the assumption that certain atoms or groups of
atoms reside in a double well potential giving rise to two-level systems
[11,12]. It has now been established that the low temperature properties of
disordered materials, especially amorphous solids are dominated by the
presence of such low-energy excitations [13]. The occurrence of tunnelling
systems in ionic conductors is favoured because of the existence of free
lattice sites. Therefore we attribute the excess specific heat in the present
Me,PS;Hal-compounds to the structural disorder of the Cu-ions which can
move by tunnelling from one lattice site to another, because in these
materials in a simple model 24 Cu atoms of the unit cell are distributed,
more or less randomly, among 48 distorted tetrahedra [14). At room temper-
ature the Cu atoms make strongly anharmonic vibrations and are able to
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overcome the rather flat potential barrier to the neighboured lattice site
[2,15]. It has been shown from the structural analysis by X-rays that in
Cu PS,Br and CuyPS;Cl the structural disorder of the A-cation sublattice
partially still exists below the phase transition (see also next section) [3].
Consequently only one half of the lattice sites are occupied. Evidently, the
fact that the ratio of the number of ions diffusing (or tunnelling at low
temperatures) to the number of free lattice positions is unity creates the best
conditions for tunnelling of ions. Therefore it is not astonishing that
Cu¢PS;Cl exhibits the highest excess heat capacity in disordered solids
found up to now. The Cu density is essentially concentrated around two
symmetrically equivalent positions. Furthermore, the structure analysis indi-
cates a high mobility of the Cu ions only within the tetrahedra. The double
well potential of the Cu-argyrodites is largely anharmonic [14]. Thus all
essential prerequisites are given. We assume that the spectrum of low
frequency tunnelling motion will be cumulated at certain frequencies rather
than being distributed smoothly in energy like in the amorphous because the
structural neighbourhoods of the Cu cations are identical. Preliminary results
of investigation of the specific heat at very low temperatures (0.05 <7 <4
K) confirm this suggestion.

The heat capacity of Cu,PS;Cl can be represented by a superposition of a
few Schottky-type anomalies below 1 K which represents characteristic
tunnelling frequencies. The tunnelling model implies that, in addition to a
distribution of attempt frequencies, there must also be a distribution of
barrier heights or activation energies. Such distributions are produced by
ion-ion interaction {8]. These results will be discussed quantitatively
elsewhere.

The probability of tunnel motion of the Cl ion is greater than that for Br
and I, because of its smaller mass. Our experiments confirm this interpreta-
tion: the excess heat is greatest for the Cl compound, smaller for Cu PS;Br
and not observable for CuyPS;I. This explanation agrees with electrical
measurements of the ionic conductance. The electronic conductivity con-
stitutes only 1077 of the total conductivity at room temperature in Cu,PS;Cl,
whereas in Cu PS;Br the ionic conductivity exceeds the electronic coun-
terpart by a factor of 1000. Finally, electronic and ionic conductivity are of
comparable magnitude in Cu PS;I [16].

Due to their larger mass the Ag ions are not as able to diffuse (or to
tunnel) as the Cu ions. There is no indication of any excess heat capacity at
low temperatures in our experiment in the case of Ag PS;Cl. It should be
noted, however, that no precise structure determination has yet been made
for Ag,PS;CL

Phase transition

The heat capacity of Cu PS,Cl clearly shows two phase transitions at 165
and 241 K. In the corresponding bromine and iodine compound only one
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transition at 257 and 270 K, respectively, was observed. These transitions are
shown in Fig. 4. The heat capacity anomalies in the three compounds near
250 K have already been reported [1,2] in connection with structure inves-
tigations. Our present data, however, are the first quantitative investigations
of the thermodynamic parameters of these materials. Since the temperature
scale in calorimetric measurements is much more precise than in crystallo-
graphic structure measurements, this may partially explain the considerable
differences of the transition temperatures between the present data and those
reported previously [1,2].

The three heat capacity anomalies near 250 K could be attributed, by
X-ray analysis, to the transition from the cubic high temperature F43m
phase into the monoclinic low temperature phase Cc which has been
described shortly in the introduction. The transitions are rather broad and
therefore the determination of the net contribution of C, to the transition is
not straightforward. In order to evaluate C;""(T') we had to construct the
lattice heat capacity in the vicinity of the transition by interpolation of the
8(T) curve below and above the transition. This interpolation has been done
smoothly as can be seen in the thin line in Fig. 4 for CugPS;Cl. Then the
lattice specific heat CpL is calculated from the interpolated 6(7T) curve.
Finally subtraction of CPL(T) from the totally measured C,(T) provides the
specific heat C;" which is associated with the transition itself. The C;"**(T')
curve is rather broad and the increase with temperature at the low tempera-
ture side is much broader and nearly exponential, whereas the decrease is
quite sharp on the high temperature side of the transition. No hysteresis
between heating and cooling of the samples has been detected.

Structural investigations [3] confirm that the transition is associated with a

TrrT I [fr7rr1rrrrryrreyvrrryrryrrrrr oy

400

LI A A S R N OO S N A B N B B B

FRTUV N  S WE W Y OO S S A WY WY TR

T N U S T U S U EEE NS S U SR N T S SE 0 Y

100 150 200 250 300 350 400
TIK]
Fig. 4. Specific heat as function of temperature near the phase transition for: (
Cu(PS;Cl; (- --) CucPS¢Br; (- ---- ) CugPS;il.

)
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continuous distortion of the anion sublattice and an ordering of the Cu ions.
Therefore the transition from disorder to order is smeared out over a rather
large temperature range. At least, at 40 K, the Cu atoms are still partially
disordered. These features lead us to the conclusion that three transitions in
Cu PS;Hal are second order. The enthalpies AH,, and entropies AS,, of the
transitions computed from C,"* are listed in Table 3. We note that the AS
values are identical to w1thm 5%, being 1.9 J mol~! K™, which provides
clear evidence that an isotypic crystallographic change occurs in the three
compounds from the cubic space group F43m to the monoclinic space group
Cc [1,2]). The second anomaly at low temperature, T, = 165 K, in CuPS;Cl
has been observed for the first time and not yet been identified by structure
analysis. Therefore the interpretation is difficult, but there are indications
that the transition is also a crystallographic one into a further low tempera-
ture phase of type Pc [4]. Our thermodynamic data suggest again a second
order transition.

Thermodynamic data

Integration of the C,(T) curves including the phase transition reglon
yields the standard enthalpy increment HQ— HY, the standard entropy Sy
and the function —[G%- GJ1/T, respectlvely. The values are calculated
from the coefficients, as received by eqn. (1). Some standard values obtained
by integration of C,(T) are given in Table 1, especially the values at 298.15
K. The thermodynamic functions were required in order to optimize the

CVT growth conditions [4]. The heats of formation were evaluated from the
following relations

T
Hyy, (Argyrodite) = A Hr —f C,(T)dT
298

in which the heat of formation itself is given by

AfHT(CuGPSSHal) =%r(AHy), — ApHy

(Zr( Tf = sum of the heats of formation of the dissociation products,
heat

of dissociation.) The first term of the right hand side can be
taken from tabulated data and the second term the dissociation enthalpy is

TABLE 3

Temperatures, enthalpies A H,, and entropies AS,, of phase transitions in CusPS;Hal
Compound T, (K) AH, (Jmol™h) AS, Jmol ' K™
Cu PS,C1 (D) 165+0.5 625+10 3.62

Cu(PS,C1(I1) 24140.5 478410 1.98

Cu(PS;Br 257405 505+10 . 196

Cu¢PS;1 270+0.5 507+10 1.57
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given by the temperature dependence of the dissociation pressure [4] by the
second law method

ApH, (1 1
in(7y/7,) = — 220 (-~ |

where R is the gas constant; £, P, the dissociation pressures at 7, and T,
deduced from vapour pressure measurements [4]; A, H' denotes the heat of
dissociation and N represents the sum of moles of gaseous dissociation
products associated with one mole of dissociated Cu PS;Hal.

The heats of formation Hj; of the argyrodites CuPS;Hal calculated in
this way are 9% larger than the sum LH3; of the heats of formation of
the binary constituents (Cu,S, CuHal) and ternary (Cu,PS,) components.

The entropies Sq were calculated using the relationship S5, = f Co(T)dIn
0

T. The thermodynamic data, thus derived are tabulated in Table 4. Values
for Sm calculated according to the Neumann-— Kopp rule (S5s (compound)

= Y53 (multiple constituents)) appear in Table 4 in brackets. The deviation
between these estimated data and the values as acquired by integration of
the C,(T') curves is less than 5%.

Our results also agree with preliminary calorimetric investigations, in
which the standard reaction heat of Cu,PS, + Cu,S + CuHal —» Cu PS,Hal
was measured.

TABLE 4
Heats of formation of Me,PS, and Me,PS;Hal (Me = Cu, Ag; Hal = Cl, Br, I)

Compound Hye (d mol ™'y 52 Imol T K™

Cu,PS,Cl 510£20 500 +10
(485.0)

Cu PS,Br 477420 4952+ 6
(494.0)

Cu P51 439420 4981+ 6
(494.6)

Cu,PS, 414420 -
(519.0)

Cu,PS, 255420 -
Q711)

Ag PS5, Cl - 573.4
{(587.3)

Ag,P5, - 560.8
(596.3)

Ag,PS, - _
, (310.2)
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CONCLUSION

In conclusion, we have measured the specific heat capacity of six argyro-
dites of the type Me,PS;Hal (Me = Ag, Cu; Hal = Cl, Br, J) and Me,PS
(Me = Ag, Cu) between 2 and 500 K. The C,(T) data have been used to
establish and to tabulate the thermodynamic functions of these compounds;
two further compounds (Cu,PS,, Ag,PS,) were measured only above 100 K.
The heats of formation are calculated and are of comparable magnitude.
Apparently, the observed crystallographic phase transitions in Cu,PS;Hal
are second order with AH = 500 J mol~! and AS=1.9 Jmol ! K™

The data presented in this paper aided significantly in the optimization of
the conditions for the growth of argyrodites by chemical vapour transport
(CVT).
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