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ABSTRACT 

A detailed analysis of the merits and shortcomings of integral methods for the treatment 
of constant heating rate, non-isothermal kinetic data is presented. A recently developed 
linearized approach, which is shown to be of the highest accuracy, is used to conduct some of 
the analyses. From these results generalizations are made concerning the ability to dis- 
criminate among alternative mechanisms strictly by the non-isothermal kinetic method. 

INTRODUCTION 

The analysis of thermogravimetric data for the determination of mecha- 
nisms and kinetic parameters has been an area of extensive activity for 
almost three decades. Integral methods, because of their relative simplicity 
and their similarities with isothermal kinetics, have received the principal 
attention. Much of the fundamental mathematical groundwork was de- 
scribed in the early literature [l-7] and has already been comprehensively 
reviewed [8]. Yet, a steady flow of refined formulations and computational 
schemes continues. Sestak has warned that such refinements are probably 
not as essential as the establishment of a secure mechanistic framework for 
solid-state reactions [9]. Such a recommendation is certainly justified, al- 
though it presumes that the book is essentially closed on how the data might 
best be analyzed. There are several reasons which indicate that this is not the 
case. 

First, little has been done in an analytical fashion to evaluate the relative 
accuracy with which A, the pre-exponential factor, and E, the activation 
energy of the Arrhenius rate constant, can be determined by each of the 
proposed integral methods. Aside from a noteworthy attempt by Broido and 
Williams [lo] most of the evaluations have been empirical and have therefore 
lacked generality. To counter the criticism that the available accuracy is 
already within the limits of the experimental variations, one must remember 
that calculational error only serves to compound the uncertainty in the final 
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results. Secondly, the rate parameters determined by each of the various 
methods are specific to the method used to derive them. Thus, if they are not 
determined to high accuracy, they can only be used to estimate extents of 
reaction through the same approximate expressions from which they evolved. 
This is a highly undesirable situation, unlike that in isothermal kinetics 
where a given mechanism, along with the rate parameters, uniquely de- 
termines reaction history. It would be advantageous if the body of data and 
analysis which has grown in non-isothermal kinetics could be meaningfully 
compared on a standard and absolute basis. Finally, a question which 
receives frequent attention is what the limits of calculational methods might 
be in discriminating among alternative mechanisms for a given reaction. Are 
there firm limits on what information can be extracted from a non-isother- 
mal experiment, or are we separated by just another mathematical adjust- 
ment from learning more than we could previously? Again, some answers 
have been provided empirically but little generalization has found its way 
into the fundamentals of the subject. 

The aim of this report is to address, and in most cases definitively resolve, 
all of these issues. Since there are but a few fundamentally different 
mathematical treatments of the integral method commonly referred to, we 
will begin with a review, giving detailed attention to the assumptions 
involved in their development and the resulting limitations on their accuracy 
and applicability. Similar treatment will then be given to a new approach for 
a high-accuracy solution to the integral problem which is graphable and has 
a simple and convenient functional form. Finally, its relationship to previous 
methods, and an exacting comparison of accuracy and utility, will be given. 
The result will be not only a new graphical method of unsurpassed accuracy 
but also a more comprehensive understanding of what may reasonably be 
expected of the integral method in general. 

BACKGROUND 

The integral form for analysis of non-isothermal kinetic data obtained at 
constant heating rate + is given by 

where g( (Y) contains the mechanistic relation for the extent of reaction (Y. The 
objectives of a kinetic study are to determine the most appropriate mecha- 
nism and to evaluate the associated energy parameter, E, as well as the 
pre-exponential factor, A. These tasks are made difficult by the fact that the 
integral cannot be solved exactly. However, a simple integration by parts 
converts the Arrhenius integral into a function of the exponential integral, 
which can be evaluated to any desired degree of accuracy using either special 
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numerical approximations [ 111, the rational or Schlomilch approximations 
[7,12,13], or asymptotic expansions [2,4-6,101. Given values of A and E it is 
straightforward to generate numerical values for g(a), and conversely given 
g( CX) as a function of temperature one can in principle extract best-fit values 
for E and A. The latter process is quite tedious, however, requiring iterative 
numerical computation, and also uninformative since it obscures any func- 
tional relationships which might lead to generalizations. For these reasons 
simplified approximations to the integral have been sought which provide 
representative values of E and A. 

The desired approximation would have the linear form 

In g(a) = In R + SO(T) (4 

where R and S are constants and 0(T) is a simple function of temperature. If 
only R contains the pre-exponential factor, and if S contains the activation 
energy, then the slope and intercept of the line determine the rate parameters 
simply. The earliest approaches involved expansions of l/T in the integrand 
of eqn. (1) to create integrable functions. Van Krevelen et al. [l] used 

+;[1 -[Y) + . ..I 

and Horowitz and Metzger [4] used 

+=-$[l-ln($)+ . ..I (4) 

where T, is an arbitrarily defined reference temperature. If the reference 
temperature is selected to be within the temperature extremes of the experi- 
ment, then both expansions are quite accurate in any realistic situation. Van 
Krevelen’s solution is written 

E/RTr+I 

(5) 

where S = E/RT, + 1 and B(T) = In T, using the notation of eqn. (2). 
Horowitz and Metzger’s solution is written 

(6) 

where S = E/RT,’ and B(T) = T. 
Neither of these formulations is any longer in much use and there are two 

predominant reasons for their failure. The first concerns the arbitrary nature 
of the reference temperature selection. It was sensibly desired that it be a 
reference point which would be recognizable by any investigator. The 
temperature at which the reaction rate was a maximum was apparently 
selected on the intuitive justification that the proper link between the 
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mathematics and the experiment should be related to the point at which 
most of the reaction occurs. While certainly reasonable, it is no less arbitrary 
from an analytical standpoint. The proper reference temperature is crucial 
for accuracy, however, since the activation energies calculated from the 
slopes of logarithmic plots of eqns. (5) and (6) are multiplicative factors of 
the reference temperature and its square, respectively. Improper selection of 
T, thus results in equivalent or larger errors in the evaluation of E. Little 
effort to optimize the reference temperature can be found in the literature. 
We will see that not only can this be achieved analytically, but also that the 
common selection of temperature at maximum reaction rate was seriously in 
error. The purpose is not to revive these approaches but rather to illustrate 
the value of the optimization process. 

The second reason these older approaches were unsuccessful was dis- 
cussed by Broido and Williams [lo]. By asymptotic expansion of the 
Arrhenius integral they demonstrated that the functional form of the Horo- 
witz and Metzger solution, f?(T) = T, was a poor approximation to the actual 
function. The Van Krevelen solution, with B(T) = In T, was certainly better, 
but it could be shown that 0(T) = l/T would be most representative of the 
actual temperature dependence of the integral. Horowitz and Metzger pro- 
posed such a solution [5], with S = -E/R, completely independent of the 
reference temperature. Unfortunately, while the correlation coefficients were 
much higher than those of the previous methods, the error in the activation 
energy still ran as high as 10% at E/ RT = 20 and 5% at E/ RT = 40. Again, 
Broido and Williams demonstrated that the error in evaluating the activation 
energy from this model would go as 2RT,/E and suggested that the value of 
E obtained from the slope of a In g(a) vs. l/T plot be diminished by 2RT,, 
where T, was loosely defined as “an arbitrarily selected temperature in the 
experimental range” [lo]. Since the error produced in E now depends 
additively rather than multiplicatively on the reference temperature, the 
absolute value of T, is not as critical to the accuracy of the energy, but still 
must be carefully selected to reproduce A correctly. Little has been done to 
pursue this reasoning, although we shall see that the suggestion leads to the 
most accurate solution available. 

The technique which has been used most commonly is based on expan- 
sions of the Arrhenius integral, either the asymptotic expansion usually 
attributed to Coats and Redfern [6] 

g(a)=$$[l -T] e-E/RT 

or the similar Schlomilch expansion 

g(a)=$!$t[l +%I-’ e-E/RT 

For large values of E/RT, eqns. (7) and (8) are essentially identical. If one 
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assumes that only the exponential term varies significantly over the tempera- 
ture range of interest, then both expressions reduce to the second Horowitz 
and Metzger solution, which we have just discussed and shown to be of low 
accuracy. Useful versions of these equations, obtained by assuming that only 
the bracketed terms are constant over the temperature range and may be set 
equal to unity, are 

lng(a)-2lnT=ln $g -FT 
i i 

Equation (9) gives extremely high correlation coefficients and reproduces 
values of E with great accuracy. This formulation has stood out as the 
simplest and most accurate method for treating thermogravimetric data. 
However, because of the approximation in eliminating the bracketed terms 
the values of A obtained are seriously in error, particularly as E/ RT gets 
smaller. No analytical method has been offered to correct this and, as a 
result, the values of A and E do not satisfactorily regenerate the original data 
when used in a high-accuracy numerical approximation. Also, the functional 
form of eqn. (9) is sufficiently different from that of eqn. (2) as to make 
generalizations about the sensitivity to different mechanisms difficult. 

In summary, eqn. (9) has been the most useful and accurate approxima- 
tion developed for thermogravimetric analysis to date. In order to demon- 
strate a more accurate and general purpose solution we will now return to 
the subject of optimization of the reference temperature used in solutions 
based on expansions of T about T,. 

THEORETICAL 

It has recently been shown, using eqn. (4) that eqn. (1) can be made 
integrable to yield a graphable solution with 0(T) = l/T [14]. Rewriting eqn. 
(4) we obtain 

[$ei-T/r]2ZI (10) 

Substituting this directly in eqn. (1) as a simple multiplier of the integrand 
results in the integrated form 

g(a) = $ E,;:22T e-_(E/R+2TA’T 

r 

(11) 

Note that using eqn. (10) as a multiplier, rather than within the exponential 
term, makes the integral much less sensitive to errors induced by the 
approximation than the previous approaches have been. Also, the values of 
E are fairly insensitive to the selection of T, since it is merely an additive 
constant in the slope of the In g(a) vs. l/T line. Finally, it is important that 
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the value of the additive constant is precisely what was recommended by 
Broido and Williams as a result of their analysis of linearized treatments 
[lo]. It should be noted that eqn. (11) can also be simply derived from eqn. 
(8) (shown by Doyle [7] to be more accurate than eqn. (7)) by substitution of 
eqn. (10) in all terms except the exponential and assuming that the bracketed 
term is essentially constant. 

Once again, in order to make eqn. (11) of high utility it is necessary to 
optimize the selection of the reference temperature. This is not a straightfor- 
ward task and we will approach it in two steps. Figure 1 illustrates a 
comparison of the logarithm of the actual Arrhenius integral with a straight- 
line fit. The slight curvature of the Arrhenius integral has been exaggerated 
for clarity. We first ask whether we can define the temperature at which the 
function has the same slope as the best-fitted line. This question is a major 
hurdle in addressing the optimization issue and was answered by demon- 
strating that the geometric mean of the temperature extremes of the plot, 
Tg = ( TlT2)“2, is, to high accuracy, the temperature which approximates the 
point at which the slopes are equal. The approach for this proof was given by 
Kassman and Squire [15] and will not be repeated here. It can be shown that 
this relationship holds for any reasonable temperature range which occurs in 
practice. Also, it will be of interest to know that the same result applies if the 
analysis is carried out with 0(T) = In T and 0(T) = T, the functional forms 
due to Van Krevelen, and Horowitz and Metzger. 

Having a unique point at which to evaluate the slope of a fitted line to the 
Arrhenius integral, which is independent of any details of an experiment 

l/T2 I/T, 

I/T 

Fig. 1. Representation of the relationship between the Arrhenius integral ( -) and the 

linear approximation (- - - - - -). 
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other than the temperature extremes, makes the evaluation of the reference 
temperature both simple and accurate. As an example, we take eqn. (8) as a 
first approximation to the Arrhenius integral. If we equate the logarithmic 
forms of eqns. (8) and (11) we obtain 

=ln$+lnT-j&-ln (12) 

Then, taking the derivatives of both sides with respect to l/T and evaluating 
the right-hand side at Tg yields 

E/R+2T,=T,+E/R+ E/R 
E/RT, + 2 (13) 

where the left-hand side is the negative slope of the fitted line, which we will 
call S, and the right-hand side is the negative slope of the approximate 
Arrhenius integral. Since S = E/R + 2T, = E/R + 2Tg, we can make the 
appropriate substitutions in the right-hand side to give 

T,=T, I-f 
1 1 (14) 

Thus, as a first approximation, eqn. (14) gives the reference temperature as a 
simple function of Tg and the observed slope of the fitted line. 

For even higher accuracy we can repeat this process using higher order 
rational approximations to the Arrhenius integral [13], however it is readily 
shown that the next order term is sufficient to establish the accuracy of T, 
for all practical situations. The result is 

T,= Tg[l -:+$I 05) 

Because eqn. (11) has a functional form which is similar to that of the 
rational approximations, this derivation of T, is relatively straightforward. If 
one were to attempt the same optimization for the Van Krevelen or Horo- 
witz and Metzger solutions, the functional forms of the expressions for T, 
that would result would be somewhat more cumbersome than eqn. (15). 
Nevertheless, the remarkable result is that the numerical values obtained for 
the optimum reference temperature for all the methods are, for all practical 
purposes, identical! Let us see how this affects the accuracy of the various 
approximations. 

RESULTS AND DISCUSSION 

Table 1 contains comparisons of the calculated values of A and E for the 
four approximations given by the present method (eqn. ll), the Coats and 
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Redfern technique (eqn. 9) and the Van Krevelen, and Horowitz and 
Metzger approximations (eqns. 5 and 6, respectively). Values of In g(a) have 
been generated using a high-accuracy rational approximation (third degree 
[13]) and constant values of A/+ = 1 and E/R = 10,000, over five tempera- 
ture intervals. These values of In g(a) have then been used at ten equally 
spaced temperatures in each range to calculate slopes and intercepts. T, was 
calculated using the present method (eqn. 1.5) and the same reference 
temperature was used in the A and E calculations for all but the Coats and 
Redfern approach, which contains no reference temperature. The tempera- 
ture ranges span a range of E/RT values from 12 to slightly over 46. The 
first column contains the calculated values of the current method along with 
the reference temperature. It is obvious that the accuracy of both the A and 
E values is quite impressive. The accuracy of the E values by the Coats and 
Redfern method is also quite adequate, but note that the A values falter with 
decreasing E / RT, in direct relation to the error introduced by ignoring the 
bracketed term of eqn. (7). The last two columns are most surprising. Using 
the optimized reference temperature we see that the E values determined by 
both of the older methods are quite good. In fact, use of the optimized 
reference temperature results in the method of Van Krevelen being of 
comparable accuracy with that of Coats and Redfern. As noted earlier, 
asymptotic expansions of l/T in the exponential term magnify the errors of 
these approximations, and thus the Van Krevelen, and Horowitz and Metzger 
methods become more accurate at the lower values of E/RT where the 
exponential term itself spans a smaller range of values. 

Although it has been shown that the older techniques can be vastly 
improved by optimizing the reference temperature, at least in regard to the 

TABLE 1 

Fitted values of the rate parameters 

Temp. 
range 

(K) 

Present 
method 
(eqn. 11) 

A/@ E/R 

Coats- Van Horowitz- 
Redfern Krevelen Metzger 

(eqn. 9) (eqn. 5) (eqn. 6) 

A/+ E/R A/@ E/R A/@ E/R 

215-296 1.0030 9998 0.9088 9988 0.8782 10022 0.5195 9948 
T, = 246.5 

296-395 1.0025 9998 0.8806 9979 0.9372 10025 0.7004 9977 
T, = 331.7 

395-512 1.0021 9998 0.8490 9965 0.9715 10029 0.8337 10007 
T, = 432.6 

512-656 1 .0018 9997 0.8139 9945 0.9954 10040 0.9219 10046 
T, = 552.4 

656-818 1 .OOlO 9995 0.7760 9916 1.0210 10057 1.0180 10104 
T, = 691.4 
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accuracy with which they determine A and E, they still have serious 
shortcomings. As discussed earlier, Broido and Williams found these func- 
tional forms not to be optimum in simulating the temperature-dependence of 
the Arrhenius integral. Even though A and E are individually fairly accurate, 
together they misrepresent the data from which they were calculated. This is 
shown in Table 2, where comparisons are made with respect to original data. 
In the first column are shown values of (Y generated by a high-accuracy 
rational approximation for a first-order chemical reaction using A/+ = 5 x 

10’ and E/R = 10,000, for the middle range of temperatures of Table 1. In 
the same order of presentation, each technique is used to regenerate (Y from 
the calculated values of A/+ (multiplied by 5 x lo’), E/R, and T, using the 
same high-accuracy rational approximation. We now see that the present 
method reproduces each value of (Y to within 1%. The Coats and Redfern 
technique has produced values of A and E which misrepresent cx by as much 
as 10%. It is apparent from the last two columns that even high-accuracy 
values of A and E can easily misrepresent original values of (Y because they 
are paired badly during fitting. However, their improvement in accuracy in 
determining values of A and E is not surprising since the optimized reference 
temperature is separated from the temperature of maximum reaction by at 
least 40 K, reducing what previously would have been a 10% error in 
reference temperature to virtually nothing. 

The final point to be discussed is the ability with which different mecha- 
nisms can be discriminated by analyzing the data of a single non-isothermal 
kinetics experiment. We must now accept that the functional form of eqn. 
(2), as expressed by our solution in eqn. (ll), is an extremely accurate, 
linearized version of the Arrhenius integral, and can be used functionally in 
its place. From Tables 1 and 2 we can safely say that it reproduces all the 
parameters within their limits of measurability. Let us now examine the case 

TABLE 2 

Recalculated extents of reaction, (Y 

T 

WI 
395 0.731 E-2 

408 O.l73E-1 

421 0.388E-1 

434 0.820E-1 

447 0.162 

460 0.297 

473 0.491 

486 0.714 

499 0.895 

512 0.980 

Exact Present 

method 

0.736E-2 

O.l75E-1 

0.391E-1 

0.826E-1 

0.163 

0.298 

0.493 

0.716 

0.896 

0.981 

Coats- 

Redfern 

0.680E-2 

O.l61E-1 O.l57E-1 O.l42E-1 

0.360E-1 0.352E-1 0.319E-1 

0.760E-1 0.746E-1 0.677E-1 

0.150 0.148 0.135 

0.276 0.274 0.251 

0.462 0.459 0.425 

0.682 0.681 0.642 

0.872 0.872 0.843 

0.972 0.973 0.960 

Van 

Krevelen 

0.658E-2 

Horowitz- 

Metzger 

0.599E-2 
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of a mechanism, h( cu), which is related to another mechanism, g(a), by 

hH=a[g(a)]” (16) 

where a and n are arbitrary constants. Then, as before 

In h(a) = In a + n In g(a) = In R + S/T (17) 

But we also have from eqn. (17) 

In g(a) = [ ln( R/a) + S/T] /n (18) 

Thus both mechanisms would fit equally well, with the slopes being related 
by the factor n. Criado and Morales [16,17] predicted a similar result on the 
basis of eqn. (9) from which the conclusion can only be weakly drawn. It 
also was erroneously concluded that the calculated activation energies would 
be directly related by the factor n, rather than the slopes as given by 
E/R + 2T,. Attempts have been made in the literature [18] to provide 
alternative analyses of data sets which would circumvent the results implied 
by eqns. (17) and (18). Closer inspection of these analyses will reveal that 
differences in the quality of fit are merely related to the weighting factor n, 
and that no more information has really been made available. 

We can now, within the limits of sensible experimental practice, make 
some generalizations about the distinguishability of mechanisms from a 
single non-isothermal data set. All the power law expressions, g( LX) = a’/“, 
are indistinguishable from each other and from the one-dimensional diffu- 
sion mechanism, g(a) = (Y *. The nucleation and growth (Avrami-Erofeev) 
mechanisms, g(a) = [ - ln( 1 - a)]““, are indistinguishable from each other 
and from a simple first-order chemical reaction. The contracting volume 
mechanism, g(a) = 1 - (1 - a)‘13, is indistinguishable from the three-dimen- 
sional diffusion (Jander) mechanism, given as its square. Criado and Morales 
[17] also attempted to show that the two-dimensional diffusion model, 
g(a) = (1 - a) ln(1 - a) + (Y, cannot be distinguished from the contracting- 
area mechanism, g(a) = 1 - (1 - (Y)‘/~, and that the three-dimensional diffu- 
sion (cylindrical) mechanism, g(a) = (1 - 2(u/3) - (1 - (u)~/~, also cannot be 
distinguished from the contracting-volume model. These results were based 
on empirical analyses of a limited range of extents of reaction, and do not 
hold in general. The mechanisms compared by Criado and Morales are 
distinguishable, at least in principle. 

CONCLUSIONS 

As promised at the outset, several questions have been answered unam- 
biguously. First, it has been shown that a linearized approximation to the 
Arrhenius integral (eqn. 11) can be used to evaluate the rate parameters of 
the Arrhenius rate constant with exceptional accuracy. The approximation is 
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enhanced by optimizing the selection of the reference temperature, which is 
based solely on the initial and final temperatures of the experiment and the 
slope of the fitted line. It was also shown that similar optimization could be 
applied to the Van Krevelen, and Horowitz and Metzger approaches, yield- 
ing improved but still lower accuracy. The present approach was also shown 
to be superior to the method of Coats and Redfern. Using a high-accuracy, 
rational approximation, it was demonstrated that the values of A and E 
evaluated by the present method reproduce the original data with notably 
higher accuracy than any other available method. Finally, the high accuracy 
of the new approach allowed its functional form to be used in setting 
definitive limits on the ability to discriminate alternative mechanisms. 
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