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ABSTRACT 

Particular experimental conditions in calorimetry of mixing by continuous injection of a 
reactant open the possibility of building a simple model to study the performance of such 
devices. The characteristic equations of the model lead to an exact formulation of a 
deconvolutive procedure based on variable inverse filtering. The way in which the parameters 
of the filter may be obtained from experimental work is established. 

INTRODUCTION 

Detailed study of the thermograms corresponding to continuous injection 
devices in calorimetry of liquid mixtures has shown a non-negligible evolu- 
tion of their dynamic characteristics with the quantity of liquid contained in 
the calorimetric vessel [1,2]. 

In this sense, RC models (localized constant models) with variable param- 
eters have been considered, and the change in the corresponding thermo- 
grams due to the variation has been systematically evaluated in different 
conditions [3,4]. 

Additionally, there has been an attempt to propose new deconvolution 
methods which explicitly take into account the change in the system parame- 
ters as the mixture process goes on. In particular, the possibility of using 
inverse multistage filtering with slightly varying time constants and small 
modifications in the sensibility has been considered [2,4]. From an experi- 
mental point of view, the values of the time constants may be obtained from 
the decay in the thermogram when the injection comes to a halt. This has to 
be done at different intermediate levels of the cell contents. A backwards 
extrapolation to the time origin gives the values of the time constants at the 
start of the injection [2]. 
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In this work, heat flux calorimeters with continuous injection of one 
component are modelled. A multi-body model (RC model) with variable 
parameters is proposed in accordance with the practical experimental condi- 
tions, namely the vigorous stirring of the liquid in the cell and the identifica- 
tion of only a few important dynamic parameters. The theoretical analysis of 
the heat transport in the model establishes not only the appropriate decon- 
volution algorithm but also the way in which the identification of the system 
should be performed. Most of the features encountered in this work are 
directly related to the calorimeter, Arion-Electronique of BCP type. Never- 
theless, the reasoning lines are applicable to equivalent devices and, what is 
more, they can be made suitable for mass-flow calorimeters devoted to the 
study of mixtures. In this kind of device the same problems occur, though on 
a different scale [5]. 

MODEL DESIGN AND RESULTS 

In the Arion-Electronique calorimeter it is clear from the experimental 
thermograms that the maximum signal-to-noise ratio that may be expected 
centers around 60 dB. The limited accuracy is mainly due to the combined 
effects of mixing and stirring. On the other hand, identification in time-in- 
variant experimental conditions clearly shows that two or three poles (two or 
three time constants) are enough to describe the system [1,2]. 

One of the simplest models which gives rise to three time constants is a 
chain-like model of three bodies. In other words, an RC model with three 
capacitors in line, each one coupled through a thermal resistance only with 
its nearest neighbours (Fig. 1). The power dissipation (thermogenesis) takes 
place at the first body and the calorimetric response (thermogram) is the 
temperature r’. Accurate values of the parameters nearly leading to the time 
constants of the Arion calorimeter may be found in table 1 of ref. 4. The 
heat balance equations of the model read 

T,(t) T$t) T3W 

Fig. 1. Schematic 
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This is a coupled system of linear, first-order differential equations. It can 
be easily transformed into a third-order differential equation of the following 
kind 

d3T3 + Bd2T, W,=A-- - 
dt3 dt2 

+Cs+DT3 

In this time-invariant model the thermogenesis will simply be achieved 
from the experimental thermogram by calculating the three derivatives in the 
above expression and multiplying them by the appropriate parameters A, B, 
C and D. This sort of calculation may be performed step-by-step using the 
set of equations 

S,‘T,+$$ 

where the time constants { 7, } are related to the physical parameters of the 
model through the expressions 

A = 7ir2T3 

B = 7i7* + 7,T3 + +r2r3 

c = ri + 72 + ,r3 (1) 

The easiest way to obtain the time constants is to calculate the Laplace 
transform of the system of differential equations to get a linear algebraic 
system. The roots in the characteristic polynomial of this system are the 
poles of the model. 

However, in a continuous-mixing device the heat capacity of the calori- 
metric vessel changes at the time the second component is being injected. 
The system of equations must be modified to take this fact into account, and 
should therefore read 

p,2(Tl - T2) = ‘2% + ‘23cT2 - T3) 

It is no longer possible to apply the Laplace transform to this system, in 
order to obtain the time constants of the model, since it still has time-vari- 
able coefficients. However, we are able, by systematically substituting each 
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equation in the one above, to get a general equation of the form 

d3T3 d2T3 
W,=A’-+B’- 

dt3 at= 
+ C’z + D’T, (2) 

Of course, this can only be used for those cases where there are no zeros in 
the transfer function of the model. As we are not interested in solving the 
system of differential equations, but in obtaining the power, W,(t), from the 
experimental thermogram, we may solve the problem by formally writing 

S =T+#~ 
2 3 

’ dt 

In these expressions, the parameters { 7,1(t)} should be considered to have 
their values at time t, but not to participate in the derivatives. With this 
convention it is very simple to see that we obtain the third-order differential 
equation (2) again. Now the { +} parameters are functions of time. They 
exactly verify the equivalents of the expressions (1). In other words, they are, 
in every instant of time, the time constants of the time-invariant model 
modified with an additional coupling, Ci between the first body and the 
thermostat. Correspondingly, as they are modified by the presence of the 
injection, the values of { 7:) cannot be obtained from the experimental 
records when the injection is cut off. The same applies to the sensibility, D’, 
which is now a function of Cl, and consequently it is no longer measurable 
from time-invariant experiments. 

To avoid the difficulty of obtaining the values of { +} and D’ experimen- 
tally, it is possible to define a new power dissipation, IV*. This explicitly 
considers the power necessary to heat the liquid coming into the calorimetric 
vessel, C, Tl. 

dT, 
W* = W, - clT, = C,(t)dt+P,2(T, - T,) 

P&T, - T2) = c2z + p23(T2 - T,) 

P,,( T2 - T,) = C3z + P3T3 

Again it is possible to reorganize the system in the form 

d3T3 +Bd2T, dT.3 W’*=W,-C,T,=A- - - 
dt3 dt= 

+C dt +DT, (3) 

where the coefficients A, B and C, though being functions of time, have 
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exactly the same functional dependence with the parameters of the model as 
they had in the time-invariant case. Equation (3) gives the power W* from 
the thermogram T3. Formally, it may be imagined as the sequence 

S =T+rdr3 
2 3 

’ dt 

dS2 
S,=S,+r2dt 

W*= S,+T~~ D 
( ) 

The values of { ri} are now functions of time but correspond instantaneously 
to the values of time constants in an equivalent time-invariant system with 
the same value of C,, that is, the same quantity of liquid in the cell. They 
may be evaluated in practice from the corresponding time-invariant experi- 
mental conditions. The parameter D stands for the static sensibility of the 
time-invariant device, in order to convert the result into power units. 

The power WI is obtained from W* using the correction &,T,. 
This last step is not experimentally feasible, because the temperature TI 

cannot be directly measured. The equations of the model, whether time 
invariant or not, show that TI can be obtained from T3 as 

TI=+$t+l)(&+l)T3 

p3 p3 
a=1+p+p 

12 23 

The values of 7: and 7; cannot, again, be obtained experimentally. Consider- 
ing that the correction in the power to be made with c,T, is very small [2], 
we may simply suppose that both values are zero and take the temperature 
TI to be proportional to T3. 

EXPERIMENTAL PROCEDURE 

The experimental procedure to obtain the power as a function of time in 
non-invariant calorimetric systems may be summarized as follows. 

Dynamic parameters 

Several identifications at different levels of cell contents are necessary. 
They may be performed on the experimental thermograms corresponding to 
several breaks in the injection. The variable time constants obtained should 
be extrapolated backwards to guess their value at t = 0. 

Sensibility 

Only two measurements have to be made. 
First, a permanent Joule effect showing the influence of the injection on 



the steady-state temperature (see, for example, Fig. 2). From this measure- 
ment it is possible in practice to evaluate the term clT, in the steady state. 

Second, the mixing of a standard binary mixture (say, for instance, 
benzene-cyclohexane) through a wide range of concentrations, in order to 
determine the static sensibility of the calorimeter. 

Once these two steps have been accomplished the power is obtained by 
means of the following expression 

where: 

(a) the ratio (As/s),,,,, is the relative decrease in the thermogram of the 
permanent Joule effect measurement (Fig. 2) due to the injection of a certain 
liquid with a rate of change in its specific heat of ( pcv))Joule; p is the density 
of the liquid, c its specific heat and v the volume injected per unit time. 

(b) s corresponds to the experimental thermogram. 
(c) IF[s] symbolizes the result of inverse filtering the thermogram with the 

0 
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Fig. 2. (A) Simulated thermogram T3 corresponding to a constant input power lasting 6150 s. 
Between t = 2100 and 4150 s there is a simulated liquid injection inside the cell which 
increases the heat capacity C, of the model by 20% of its initial value. (B) The steady-state 
interval of T3 enlarged ten times to show the effect of injection. The figure shows the way of 
experimentally obtaining, from the recorded thermogram, the relative value (As/s),,,,,. 



261 

parameters { r,(t)}, namely 

(d) (pcfi) is the change in heat capacity of the calorimetric vessel due to 
the component injected into the mixture. 

(e) S is the static sensibility of the device in the absence of injection. S 
could be directly measured from the Joule effect, but the presence of the 
heater and the thermal conduction through the wires modify the heat 
balance. It is generally acknowledged that a calibration based on standard 
mixtures may give the value of S with greater accuracy. Equation (4) again 
applies, with the power W replaced by (h: iz,). Here h: is the semiempirical 
polynomial of the excess partial molar enthalpy as a function of concentra- 
tion corresponding to the standard mixture developed in the cell, and hi 
gives the number of moles of liquid injected per unit time. 

CONCLUSIONS 

A way of identifying the dynamic properties of a time-varying calorimet- 
ric system has been proposed. The experimental device is used in the study 
of binary mixtures by continuous injection of a component. The useful 
parameters { I,}, generalization of the time constants to the time-varying 
systems, are obtained by cutting off the injection and identifying the 
corresponding thermograms. This is done for different concentrations. It is 
also necessary to make an extrapolation of these values to the origin to get 
the initial parameters. 

The injection affects the dynamic sensibility. By means of a permanent 
Joule effect, and injecting at a constant rate to reach the new steady state, it 
is feasible to measure the sensibility change for a certain density, specific 
heat, input power and volume rate. 

Deconvolution in non-invariant calorimeters can finally be achieved by a 
variable inverse filtering with the parameters previously obtained, and a 
correction, measured from a permanent Joule effect, accounting for the 
power taken in by the injection. 
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