
Thermochimica Acta, 84 (1985) 263-271 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

263 

EVALUATION OF KINETIC PARAMETERS FROM 
THERMOGRAVIMETRIC CURVES. PART III. MODIFICATIONS OF 
THE DIFFERENTIAL CORRECTION METHOD * 

S.P. WONG 

Department of Physics, The Chinese University of Hong Kong (Hong Kong) 

D.T.Y. CHEN, P.H. FONG, M.K. LEUNG and H.C. NG ** 

Department of Chemistry, The Chinese University of Hong Kong (Hong Kong) 

(Received 6 September 1984) 

ABSTRACT 

Two new differential correction methods for evaluating kinetic parameters from thermo- 
gravimetric data, based on the minimization of the sum of squares difference between the 
observed and calculated temperatures, and between the observed and calculated da/dT in 
differential form, respectively, are proposed. The new methods were tested by the experimen- 
tal data of acid-catalyzed iodination of acetone with satisfactory results. 

INTRODUCTION 

The mechanisms of solid-phase reactions are very complicated. According 
to !$estak and Berggren [l] five types of mechanism have been identified. A 
general formula is given 

z = k#(l - (Y)” [ -ln(l - LY)] P 

where (r represents degree of conversion at time t, k is the rate constant 
which is a function of absolute temperature T. The five known types of 
mechanism are m, n, p, mn and np. Many methods and modifications have 
been proposed to evaluate the kinetic parameters of solid-phase reactions 
from thermogravimetric (TG) traces [2-231. Chen and Fong have proposed a 
combined numerical method [22] in which the secondary dcu/dT values are 
first treated by the linear least-squares method [24] to determine the correct 
type of reaction mechanism and the approximate values of its kinetic 
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parameters. The resultant parameters are subsequently improved by the 
differential correction (DC) method using the more exact experimental data 
of (Y and T. The method has been applied successfully to analyze a set of 
synthetic data and thermal dehydration data of gypsum by Sestak and 
Berggren [l] and also the TG data for the thermal dehydroxylation of 
Mg(OH), [23]. However, the method is not always successful, divergence 
may occur in some cases especially when it is applied to analyze solution 
data [21]. This paper reports two modifications to improve the combined 
numerical method. 

RESULTS AND DISCUSSION 

The basic equation for a dynamic kinetic method is 

J “A A Te-E,RTdT 
() f(a) =c 0 J (2) 

where A is the pre-exponential factor for the Arrhenius equation, C is the 
heating rate and E the activation energy. The left-hand side of the above 
equation may be symbolized by F and the right-hand side by G, i.e. 

F(ai, m, n,p)= G(qy-4, E) (3) 

where m, n, p have been defined by eqn. (1). In the original DC method [22] 
the principle is to find a set of kinetic parameters m, n, p, A and E such that 
the sum of the square difference 

is minimum. 
The reason for divergence encountered in this method may be explained 

as follows. Suppose a set of parameters m, n and p gives a value of F smaller 
than the desired accuracy, then any set of A and E which gives a G value 
smaller than, but not necessarily close to F, would yield S and satisfy the 
condition mathematically, but might not give rational parameters. This 
would cause overflow or underflow in the analysis computation. 

Modification I. Minimization with respect to temperature 

Now let us consider the problem in a slightly different way. For a certain 
set of parameters, a graph of (Y vs. T may be calculated from eqn. (2). An (Y 
vs. T curve may also be constructed from the thermal analysis data. For a 
given value of (Y;, there are two values of T; T,i read from the experimental 
curve and T,’ from the calculated curve. The best set of parameters must be 
those which would make the following sum of least-squares difference 

(5) 
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a minimum. In this treatment T, are experimental values which are definite 
and real. Therefore, there could only be one set of kinetic parameters that 
would give S, a minimum value, and no divergence is expected to occur. The 
kinetic parameters obtained by minimizing S, are believed to be more 
accurate than those obtained by minimizing S in eqn. (4). Since it has been 
reported that kinetic parameters evaluated by minimizing S give differences 
of (T, - T,) larger at lower values of (Y than at higher values [23], minimiza- 
tion of S, should be a better criterion than the other. 

The necessary conditions for minimizing eqn. (5) are 

as, as, as, as, 
-=();an=O;ap= as, 
am O;z =Oand~=O 

Let m”, no, p”, A0 and E” be the approximate values of the corresponding 
parameters derived from the linear least-squares method as described in a 
previous paper [22], and Am, An, Ap, AA and AE be the differential 
corrections that must be added to the corresponding approximate parame- 
ters in order to achieve the condition of “best fit”, namely 

m=m’+Am (6) 

n=n’+An (7) 

p=p’+Ap (8) 

A=A’+AA (9) 

E=E’+AE 00) 

substitute these equations into eqn. (5), apply Taylor’s expansion and neglect 
the terms which have higher powers in Am, An, Ap, AA and AE, we have 

m+(ii)iAn 

In eqn. (11) we write T instead of T, for the sake of simplicity. 
The necessary conditions to make S, a minimum are 
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04) 

06) 

where To denotes T( (Y~, WZ’, no, p’, A’, E’). Equations (12)-(16) lead to five 
simultaneous equations which are linear to the differential corrections. These 
five equations can be expressed in the following form 

[UI [Al = [WI (17) 

where [U], [A] and [W] are matrices which are defined as follows: 

08) 

09) 
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CWTO)(gJ 
x(q-To)($ i 

[w]= ccc-TO)(g) 
1 

Ck- TO)($); 
Ck- To)(g) 

(20) 

Am, An, Ap, AA and AE values can be obtained by solving eqn. (17). The 
coefficients in the above equation containing T are calculated from eqn. (2). 
The calculation procedure involves the evaluation of two integrals F and G 
as shown in eqn. (3) by a numerical method such as Gauss quadrature for 
numerical integration as discussed previously [22]. Partial derivatives of T 

with respect to m, n, p, A and E are related to F and G by the following 
equations 

aT aF aG -=- 
am am / ii? 
aT aF aG 

an=an / aT 

aT aF aG 

ap=ap / aT 

aT aG ac 

/ 
-=_-- - 
aA aA aT 

aT aG aG 

/ 
-=_- - 
aE aE aT 

(21) 

(22) 

(23) 

(24) 

(25) 

The obtained Am, An, Ap, AA and AE values are combined with first set of 
m”, no, p”, A0 and E” to give a second set of {m’, no, p”, A’, E’}. The 
process is repeated until the desired accuracy is acquired. 

The above discussed method was tested by the data of a zero-order 
reaction in solution: the acid-catalyzed iodination of acetone [21]. The 
original data, which are expressed in x and dx/dt where x is the concentra- 
tion in mol l-r, are converted to (Y and da/dt by the following transforma- 
tions 

a=x/a 

where a is the initial concentration 

(26) 

dcu 1 dcu 1 dx _=--=__ 
dT C dt aC dt (27) 
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The data used for testing are shown in Table 1. 
The basic kinetic equations are transformed as follows 

dx -= 
dt 

AeeEIRT( a - x)’ 

dell 1 dx -=--= 
dt a dt 

Aa”-le-E/RT(l _ cy)” 

da a dx Au”-* -= --= --e--/RT(l _ cr)” G ke-WRT(l _ a)” 
dT C dt C 

+ n In( 1 - CX) 

(30) 

(30 

where k = Aa”-‘/C is a characteristic parameter for the reaction discussed. 
By the linear least-squares method, we obtained k = 1.143 X 1013 s-l, 

E = 71.21 kJ mol-‘, n = -0.1172. Based on these initial values of the kinetic 
parameters, the results obtained from the modified differential correction 
method by minimizing the temperature are shown in Table 2. As seen in 

TABLE 1 

Acid-catalyzed iodination of acetone in aqueous solution [22] a 

Time Temp. 
(min) (K) 

a da/dT 
(1O-5 mint) 

35 287.8 0.133 1.34 287.7 
40 289.5 0.172 1.60 289.5 
45 291.2 0.219 1.92 291.2 
50 292.8 0.277 2.27 293.0 
55 294.5 0.342 2.68 294.5 
60 296.2 0.413 3.35 296.0 
65 297.8 0.522 3.89 297.8 
70 299.5 0.642 4.75 299.5 

a Heating rate, 1°C min-‘; initial concentration of iodine,’ 0.003833 M. 

TABLE 2 

Kinetic parameters from the modified DC method. Minimization with respect to temperature 

Count n k (lOI s-‘) E (kJ mol-‘) 

0 -0.1172 1.143 71.21 
1 0.3748 2.796 96.30 
2 0.2595 3.365 96.28 
3 0.2584 3.480 96.31 
4 0.2586 3.964 96.32 
5 0.2586 3.494 96.32 
6 0.2584 3.488 96.32 
7 0.2584 3.488 96.32 
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Table 2, the values of n and E are 0.26 and 96.3 kJ mol-i, respectively. The 
theoretical value of n is 0 and the accepted value of E is 81.6 kJ mol-‘. The 

calculated values of temperature at the corresponding values of a are listed 
It is seen that they are in excellent agreement in the last column of Table 1. 

with the experimental values. 

Modification II. Minimization 

f orm 

Recalling eqn. (30) 

dcu 
dT = ke- My1 - a)” 

let 

dcv; 
f,=z 

with respect to kinetic equations in differential 

(30) 

(32) 

which can be determined from the experiment, as shown in Table 1, and let 

gj = kemEIR’(l - (yi)n (33) 

Apply the Taylor expansion and neglect the terms in higher powers of Ak, 
AE and An, we get 

(34) 

where go is the calculated value based on the approximate parameters of k, 
E and n from the linear least-squares method. The best set of parameters 
must be those which would make the following sum of least-squares dif- 
ference 

a minimum. This requires 

as as as 
-=O;==O;Y&=O 
aAk 

and leads to three equations which are linear to the differential corrections, 
Ak, A E and An. These three equations can be expressed in the following 
form 

at% a& 
an ak Ak I(-1 lgf,-gP)~ 
ag, ag, - 
Z aE I( 1 

*E = x(6-g,“)g 

?&’ 
an 1 

An md?)~ 

(36) 
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TABLE 3 

Kinetic parameters from the modified DC method. Minimization with respect to kinetic 
equations in differential form 

Count n k(1013 s-') E (kJ mol-‘) 

0 -0.1172 1.143 71.21 
1 - 0.0773 2.641 73.85 
2 - 0.0769 3.423 73.89 
3 - 0.0769 3.425 73.89 
4 - 0.0769 3.426 73.89 
5 - 0.0769 3.425 73.89 
6 - 0.0769 3.425 73.89 
7 - 0.0769 3.425 73.89 

Ak, AE and An values can be obtained by solving eqn. (36). f; is determined 
experimentally, and the partial derivatives of g, with respect to k, E and n 
are obtained by differentiating eqn. (33). The obtained Ak, AE and An 
values are combined with the first set of k”, E” and no to give a second set of 
{ k, E, n }. The process is repeated until the values of k, n and E converge. 

The validity of this treatment was also tested by the data of the zero-order 
reaction of acid-catalyzed iodination of acetone. Results obtained from the 
differential correction method by minimizing the kinetic quantities in dif- 
ferential form are shown in Table 3. The values of n and E are -0.08 and 
73.9 kJ mol-‘, respectively, closer to the theoretical value of n and the 
accepted value of E. This method has the merit of simplicity. The tedious 
procedure of numerical integration of F and G is avoided. 

In conclusion, two modifications to the combined numerical differential 
correction method for evaluating kinetic parameters from thermogravimetric 
data are proposed. The first modification is based on the minimization of the 
sum-of-squares difference between the observed and calculated temperatures 
and the other is based on a non-linear least-squares treatment of the kinetic 
expressions in differential form. Both methods were tested by the experimen- 
tal data of acid-catalyzed iodination of acetone and the results were satisfac- 
tory. 
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