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ABSTRACT 

A novel definition of scanning calorimetry is introduced. Thermodynamic formulae are 
derived to prove the accuracy of the new definition which is based on the calorimetric 
measurement of the power of the process of linear variation of an independent thermody- 
namic variable. A detailed analysis is given of the dynamic precision of the diathermic and 

compensation methods of power determination. To achieve this, dynamic errors in the time 
domain and dynamic errors in the parameter space are used. The main problems arising in 
obtaining the linear variation of independent thermodynamic variables are discussed. Prob- 
lems of dynamic precision related to the organisation of a scanning calorimeter experiment 
controlled by an independent thermodynamic variable are discussed for the case of first-order 
phase transitions. 

INTRODUCTION 

It is well known that the best thermodynamic description of a system is 
made with the use of potential functions. Unfortunately, their direct experi- 
mental determination is very difficult. More often, they are determined 
through direct measurements of their derivatives against an independent 
thermodynamic variable. Scanning calorimetry is one of the techniques 
adapted to the determination of thermodynamic function derivatives. The 
scanning calorimeter is an instrument which enables the measurement of the 
power of a thermodynamic change induced by a known variation of an 
independent thermodynamic variable under given thermodynamic condi- 
tions. Linear variations of such variables are advantageous, because their 
time derivatives are constant. The objectives of this paper are to prove the 
accuracy of such a definition, to assemble the thermodynamic foundations 
for scanning calorimeters controlled by different independent thermody- 
namic variables, to perform a quantitative analysis of the respective metro- 
logical techniques, and to illustrate the advantages of using them in the 
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thermodynamic investigation of a system. For simplicity, only samples of 
pure substances will be considered as homogeneous systems and as two-phase 
systems with first-order phase transitions. 

BASIC THERMODYNAMIC DEFINITIONS 

The thermodynamic formulae given in this paragraph are written for one 
mole of a pure substance. The enthalpy differential is described by the 
following equations 

0) 

dH(T, p) = dQ + Vdp (2) 

When the pressure is kept constant and the temperature is varied as a linear 
function of time 

p=const,dp=O, T=T o + bt, dT= +bt (3) 

eqns. (1) and (2) reduce to 

(4 

where qP( T) is the power generated or absorbed under isobaric conditions 
and b is the rate of linear temperature variation. This is the fundamental 
thermodynamic principle for temperature-controlled scanning calorimetry at 
constant pressure [ 11. 

When the temperature and kept constant is the pressure is varied as a 

linear function of time 

T= const, dT= 0, p =po f at, dp = +adt 

eqns. (1) and (2) reduce to the following form 

(9 

Jg ( =qT(p)= k[(giT- V]a= k(e),Ta= -[*ig)pTa] (6) 
dt T 

where qT( p) is the power generated or absorbed under isothermal condi- 
tions and a is the rate of pressure variation. As it has been shown elsewhere 
[2,3], this is the fundamental thermodynamic principle for pressure-con- 
trolled scanning calorimetry at constant temperature. 

In order to introduce volume as an independent variable it is advanta- 
geous to write thermodynamic equations for the change of internal energy 

dU(T, V)=(g)VdT+(z)TdV (7) 

dU(T, V) = dQ -pdV (8) 
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When the volume is kept constant and the temperature is varied as a linear 
function of time 

V= const, dV= 0, T= To f bt, dT= kbdt 

eqns. (7) and (8) reduce to 

(9) 

(10) 

where q,,(T) is the power generated or absorbed under isochoric conditions. 
This is the fundamental principle for temperature-controlled scanning 
calorimetry at constant volume. 

When the temperature is kept constant and the volume is varied as a 
linear function of time 

T=const,dT=O, V= VO/,ct,dV= +cdt (II) 

eqns. (7) and (8) reduce to the following form 

~l,=d~)= *[($$+I+= +),cT= -[+)/T] (12) 

where qT( V) is the power generated or absorbed under isothermal condi- 
tions and c is the rate of linear volume variation. Equations (12) form the 
fundamental principle for a technique which, similarly, can be called 
volume-controlled scanning calorimetry at constant temperature. 

To facilitate the formulation of a synthetic view of scanning calorimetry, 
all the equations derived above are presented together in Fig. 1. The term 
“ temperature-controlled scanning calorimetry” was introduced by O’Neill 
[l]. Introduction of the other terms is a logical extension and a direct 
consequence of the thermodynamic description of a pure substance. In all 
the cases presented above of two independent thermodynamic variables, one 
is always kept constant and the other is controlled in a well-defined manner 

VARIABLES (T,p) VARIABLES(T,Vl 

dHiT.p)= (+);T + ($)dp dU(T,VV)=(?$)~T+ ($$)fV 

dHiT,p)-dO+Vdp 

dT-O:p-piat:dp-+adt dp-O:dV-0 L --------,,:;;;:;~;;;;~~dt 

1 1 
PRESSURE CONTROLLED TEMPERATURE CONTROLLED VOLUME CONTROLLED 

'x... 1 

' -SCANNING CALORIMETRY *’ ’ ’ 

Fig. 1. A scheme of thermodynamic foundations for scanning calorimetry. 
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(linear variation). The resulting changes of the third, dependent variable are 
measured as heat power. For example, when the substance under investiga- 
tion is an ideal gas, the derived equations reduce to: 

(a) pressure-controlled scanning calorimetry at constant temperature 

- Va 

(b) volume-controlled scanning calorimetry at constant temperature 

T=const, V=ct, q,(V)= -Tc = -PC 
V 

(13) 

04) 

(c) temperature-controlled scanning calorimetry at constant pressure 

p=const. T=h t, q,(T)= w b= [ aHIp bT(~)p(~), = Vb&js (15) 

(d) temperature-controlled scanning calorimetry at constant volume 

V=const, T=bt, qF(T)= i~i~b=bTi~ioi~i,=pb(~lS (16) 

Relations (13) and (14) not only directly confirm the possibilities of scanning 
calorimetry and prove the accuracy of the definitions proposed, but can also 
be used for calibration and/or verification procedures of given calorimetric 
systems. One can also see that scanning calorimetry is a powerful technique 
which enables the full thermodynamic description of a substance to be 
elucidated by dynamic calorimetric measurements of appropriate derivatives 
only. 

From the metrological point of view, it is much easier to use intensive 
variables as controlled variables. This is one of the reasons why, of the three 
main thermodynamic variables: temperature, pressure and volume, the last 
was almost never used in dynamic calorimetry. The calorimeter of Johnson 
et al. [4] uses volume variations, but its output signals are temperature and 
pressure. Thus, at least in the sense of the equations presented and defini- 
tions proposed here, it is not a scanning calorimeter controlled by a 
thermodynamic variable. In the range of rapid variations of volume when the 
adiabacity of the system is easily maintained, the calorimeter gives informa- 
tion on (ap/aT), values of the substance. One can see from eqns. (13) and 
(15) that the same information can be elucidated by scanning calorimeters 
controlled by pressure and temperature 

3P 
i 1 aq,(T) - =- 

aT .y bq,( p) 
(17) 

The subsequent analysis presented in this paper will be devoted mainly to 
pressure- and temperature-controlled scanning calorimeters. As stated above, 
all equations have been derived for one mole of a pure substance. In a real 
calorimeter these equations must be applied to all materials and substances 
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submitted to the action of pressure or temperature. Thus, the power output 
signal of a scanning calorimeter and its thermodynamic significance must be 
analysed for a given calorimetric construction. There are two basic and 

general conditions which must be fulfilled to make scanning calorimetry an 
accurate method. First, the calorimetric unit must be able to measure the 
power, and second, the independent variable must be changed strictly 
linearly, independently of internal and external disturbances. The indepen- 
dent variable must change uniformly over the whole of the sample investi- 
gated. Any disturbance of the homogeneity and/or of the linearity of the 
variations will cause perturbations of the calorimetric signal and the rela- 
tions derived will not be valid. Of course, other continuous functions of the 
independent parameters could be used, but the constants a, b and c would 
then have to be replaced by the time derivatives of these functions. Below, an 
analysis is given of problems arising from calorimetric measurements of 
power and from the realisation of programs of linear variation of thermody- 
namic parameters, such as pressure and temperature. 

CALORIMETRIC MEASUREMENTS OF POWER 

Among different techniques of determination of power the most im- 
portant are two calorimetric methods: diathermic and compensated. In this 
paper some problems will be discussed which arise from applications of 
these techniques to scanning calorimetry and which were insufficiently 
analysed in the calorimetric literature published so far. 

The diathermic method 

The diathermic method, also called heat-flux [5] or non-isothermal-non- 
adiabatic [6], belongs to the group of passive thermal systems [7,8]. Many 
papers have been devoted to the analysis of the dynamic properties of this 
method from the point of view of both the calorimetric transfer functions 
and correction techniques used for the elimination of thermal inertia. Re- 
views of correction techniques have been given by Randzio and Suurkuusk 
[9] and by Zielenkiewicz [lo]. A comparison of digital correction techniques 
has been presented by Cesari et al. [ll] as a result of a multi-national 
program. A comparison of harmonic and differentiation techniques has been 
made by Cesari et al. [12]. It is worth noting that the authors of that paper 
[12] have reduced the output signals of both techniques to the same level of 
noise and noticed that both techniques give comparable dynamic responses 
to the same input signal. From a visual appreciation of the results obtained 
in different laboratories, one could have previously thought that the harmonic 
technique was much more powerful than differentiation. This result shows 
the importance of the quantitative treatment of dynamic calorimetric mea- 



Fig. 2. A simplified model of a diathermic calorimeter. 

surements. Unfortunately, there is a lack of such treatments in dynamic 
calorimetry. In 1980, Randiio and Suurkuusk [9] proposed that some stan- 
dard methods should be accepted by all laboratories when presenting dy- 
namic calorimetric data for publication. The authors claimed that the 
dynamic parameters of the calorimeter used should always be given, together 
with the thermogram or with any other result of the dynamic calorimetric 
measurements. In this paper, the problem of dynamic accuracy will be 
analysed quantitatively with the use of the concept of dynamic errors of two 
types: dynamic errors in the time domain and dynamic errors in the 
parameter space. To achieve this, a very simple model of a differential 
calorimeter will be considered. A schematic diagram of this calorimeter is 
presented in Fig. 2. The differential equation of the measuring vessel can be 
presented as 

d T< 
r.-+ T,=-&+ TT 
’ dt c 

A similar equation can be written for the reference cell 

d TR 
” dt 

__ -I- T, = T7 

(18) 

(19) 

where rc = Cc/c+ and rn = C,/a, are time constants of the measuring and 
reference vessels, respectively, and qtN is the input power developed in the 
measuring vessel. By subtraction of eqns. (18) and (19), and assuming that 
the time constants of both vessels are equal, one can obtain the following 
equation in the time domain 

(20) 
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where 8 = T, - T,, and its homologue in the frequency domain 

(21) 

where k, is the static gain of the calorimeter, G,(s) is its complex dynamic 
gain and G,(s) its transfer function. Equations (20) and (21) show that the 
calorimetric output signal, 8, for rapid changes will not follow the input 
power, qlN, and a certain dynamic error will appear. This dynamic error can 
be defined as follows [13] 

a dyn,/ = Ott > - ‘Ott) 

or in a quadratic form 

‘iyn., =kT[ Adyn.r]2df (23) 

Similarly, a relative error can also be defined 

1’2 
(24) 

where 0,(t) is the output signal of a hypothetical calorimeter with the same 
static properties as the real calorimeter (the same static gain, k,) and without 
any inertia (Cd = 1). The dynamic error Adyn,[ is a function of time while its 
quadratic forms, absolute and relative, are numbers. 

As an example of application, an input signal of the following form will 
be considered 

%N(f) = rt[f(t) - f(t - 41 
where 

(25) 

(26) 

d is the time interval of the input signal and r is the rate of power variation. 
As will be discussed later, such a form of the input signal is very common in 
scanning calorimetry investigations of first-order phase transitions. The 
solution of eqn. (20) with the input signal defined by eqn. (25) gives the 
output signal of the model calorimeter 

for 0 <t <d 

(27) 
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Thus, according to definition (22) the dynamic error in this case is 

i ( rrc e -f/T< - 1) for 0 <t< d 

(28) 

It was assumed for this example that the static gain of the calorimeter is 
equal to one (k, = l), so that the output signal of the hypothetical calorime- 
ter is directly equal to the input signal defined by eqn. (25). It is worth 
noting that the integrals of the two parts of dynamic error (eqn. 28) in the 
respective time intervals are equal to each other with opposite signs. Thus, it 
is clear in this case that the dynamic error has no influence on the static 
precision of the calorimeter. The quadratic form of the dynamic error for the 
input signal (eqn. 25) is 

r for 0 <t < d 

a2 dyn.t = (29) 

for t 2 d 

and according to the definition given in eqn. (24), the relative dynamic error 
is 

Graphic representations of the input and output signals and of the respective 
dynamic errors are given in Fig. 3a-c for the particular case when r = 0.1 W 
per one calorimetric time constant and the ratio d/r, is equal to 10. A 
graphic representation of the dependence of the relative dynamic error on 
the ratio d/r, is given in Fig. 3d. It is worth noting that eqn. (30) and the 
graphic presentation in Fig. 3d show how much the relative dynamic error 
for a given d value will decrease when the time constant, rc, is reduced by a 
proper correction technique [8], or how much, for the same case, the time of 
measurement can be shortened without increasing the relative dynamic error. 
From eqn. (28) one can see how a reduction of the calorimetric time constant 
also reduces the stationary dynamic error in the time interval 0 < t < d, 
which is so important in phase transition investigations. For example, a 
reduction of the time constant by a factor of 10 reduces the stationary 
dynamic error by the same factor for the same rate of power evolution, r. 
The dependence of d and r on sample size and on the rates of pressure or 
temperature scans with relation to dynamic errors will be discussed later. 

Equations (28)-(30) are only valid for the input signal defined by eqn. 
(25) and for the calorimeter with one time constant (eqns. 20 and 21). It is 



Fig. 3. A graphic presentation of dynamic errors in the time domain. 

possible to derive similar equations for other particular input signals and for 
other calorimeters, but use of frequency analysis enables general relation- 
ships to be derived without assuming any particular form of the input signal 
or any particular form of the calorimetric transfer function. With the use of 
the Parseval equation 

J~,fjr)12dr=~j_iXlf(jW)12d~ 
0 cc 

(31) 

one can write 

(32) 

By introducing eqn. (21) into eqn. (32) one obtains 

jml~~~,,12d~=~fl+nlCC(jW)-~s121~,~(~~)12d~ (33) 
0 CC 

where I qlN( jw) I ’ is, by definition, the spectral density of the input signal, 
S&U), and eqn. (33) can be written as 

a2 dyn = 
J 

?A dy”,~12dT=~l__+mlG~(jw)-k,12S,,,(W)dW (34) 
0 m 
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A similar equation for the relative dynamic error can be written 

Equations (34) and (35) give a quantitative description of the relationship 
between the dynamic error, calorimeter properties represented by its transfer 
function and dynamic properties of the input signal represented by its 
spectral density. The main limitation of the equations presented is the fact 
that the spectral density of the input signal is not usually known a priori, 
often being the variable searched for in dynamic measurements. However, 
use of eqns. (34) or (35) allow the a priori determination of which signals can 
be measured in a given calorimeter at a desired dynamic precision. 

The above discussion of the dynamic errors in diathermic measurements 
of thermal power was limited to the case where the metrological parameters 
of the calorimetric system remain constant and, consequently, the coeffi- 
cients of the differential equation and the equation itself remain unchanged. 
For any change in these parameters during the course of the measurement, 
the calorimetric output signal evolves with time, without any obvious rela- 
tionship with the input signal. This evolution causes errors in the dynamic 
measurement. To differentiate these errors from those in the time domain 
they are called dynamic errors in the parameter space and are related to the 
change of the structure of the system. The description of dynamic errors in 
the parameter space can most easily be accomplished with the use of 
sensitivity functions [14], defined in the time domain or in the frequency 
domain. In order to introduce the definition of the sensitivity function into 
the time domain for the diathermic calorimeter, a general form of the 
ordinary differential equation describing its properties is written as 

fp’“‘, e-l),. . .) 9, t, CYJ = 0 

where cy,, denotes the nominal value of the parameter. For simplicity, only a 
homogeneous equation has been written without any input signal. It can be 
assumed that the above nominal differential equation has a unique solution: 
0, = O( t, q,). If it is now assumed that the parameter changes its value, 
(Y = (Ye + ACY, then the corresponding actual differential equation can be 
written as 

f[P, @-I),. . .) 8, t, a] = 0 (37) 

where (Y is called the actual parameter value. The solution of eqn. (37), 
19 = O( t, a), is called the actual (or perturbed) solution. If it is assumed that 
e(t, a) is of the same type as d(t, ao) and that B(t, a) deviates infinitesi- 
mally from O(t, a,,) if (Y deviates infinitesimally from CQ, then e(t, a) is a 
continuous function of (Y. With these assumptions the actual solution 8( t, a) 
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can be expanded into Taylor series around (Ye and if Aa -+z (Ye it can be 
written as 

(38) 

The definition of the output sensitivity function in the time domain a( t, q,) 

can now be introduced for the diathermic calorimeter 

(39) 

On introduction of this definition into eqn. (38) the actual output signal can 
be written as 

e(t, a) = O(t, ao) +a(t, a,)Aa (40) 

The second term in eqn. (40) is called the parameter-induced output error. 
The output sensitivity function defined in the time domain is a time function 
whose shape is dependent on the shape of the actual input signal. This is one 
of the shortcomings of sensitivity functions in the time domain. Sensitivity 
functions defined in the frequency domain have found more use. They are 
based on the transfer function or on the transfer matrix of the system. One 
of the sensitivity functions defined in the frequency domain is the Bode 
sensitivity function [15], ST(s), related to a Bode plot of dynamic proper- 
ties of a calorimeter [16] and defined as follows 

q+)= a lnGc aGC/GC I I a% _ "j.0 ~ = 
a In “j a,, 

aajiffj n, = - aaj u,j GC.O 
(41) 

where G, = GJs, (Y) is the actual transfer function of the system, G,,. = 
G&s, ao) is the nominal transfer function, a0 is the nominal parameter 
vector and a is the actual parameter vector. The relationship between the 
output sensitivity function, a(t, (Ye), and the Bode sensitivity function, 

SGC( s), can be found by applying the Laplace transform to eqn. (39), then 
u&g relation (21) and definition (41) 

z{ u(t7 aO)} = ae(s, a) = a%+, hhb) = sGc(s> G&, ao) 4 N(S) 

aa 
aaj 011 I 

J Lyi.0 

(42) 
Integration of eqn. (42) gives the actual value of the output signal in terms of 
the complex frequency 

e(~, a) = ecs, ao) + i sz(s)e(s, ao)2 
j=l 

(43) 

From this equation one can derive an equation defining the relative parame- 
ter-induced error, &dyn,p 



(44) 

It can be seen that the relative parameter induced error, 6dyn.p, is only related 
to the structure of the calorimeter. For the diathermic calorimeter analysed 
in this paper the transfer function is described by eqn. (21) a, AI aC, a2 = q., 
and the Bode sensitivity functions are as follows 

Thus, the relative parameter-induced error of the calorimeter is equal to 

6 Arcs 1 + 2~c.~s = - -- ACX, 
dyn,p 1 + rcoS ac.0 1 + rc,os 

(45) 

(47) 

It was assumed that the time constant of the calorimeter depends on the heat 
exchange coefficient, but the heat exchange coefficient does not depend on 
the time constant. Thus, the change in the time constant, for example by 
changing the heat capacity, does not alter the heat exchange coefficient. In 
some cases the change in the heat exchange coefficient, CQ, is a reproducible 
variable and can be introduced into the calculation procedure. Unfor- 
tunately, the change in aC is often not reproducible, or not known a priori, 
when this procedure cannot be applied. The change in the calorimetric time 
constant depends not only on the heat exchange coefficient but also on the 
heat capacity, which frequently changes during the course of measurements. 
These are the limitations of the diathermic method, unless the real output 
data are corrected a posteriori with the use of eqns. (44) or (47), if the 
changes and nominal values of (~c and rc can be determined. 

The compensation method 

The compensation method belongs to the group of active thermal systems 
[7,8]. As it is known [17] the transfer function, H(s), of the active system 
(closed feedback loop) is related to the transfer function of the passive 
system (the same system with open feedback loop) by the following equation 

H(s) = 
k&(s) 

1 + k&(s) 
(48) 

where k,, is a gain of the variable component. In the case of the calorimeter 
analysed in this paper with one time constant, eqn. (48) takes the following 
approximative form 

(49) 
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Fig. 4. A diagram of a differential power compensated calorimeter where the sample is inside 
the feedback loop. 

where K is the total gain of the compensation feedback loop (K = k,,k,). It 
can be seen that when K is large the influence of the time constant on 
calorimetric response is seriously reduced. As it was shown by Randzio and 
Sunner [18] this is true only under the condition that the substance investi- 
gated is located inside the feedback loop. If the construction of the calorime- 
ter is such that the substance investigated is placed outside the feedback 
loop, the model description contains an extra term in which the time 
constant is not reduced by gain of the feedback loop. The analysis of 
Randzio and Sunner has been made for the simple calorimeter. It can be 
claimed that the situation is improved by a differential mounting of the 
calorimetric vessels. To verify this suggestion, a similar analysis is performed 
below of the influence of the sample position in differential compensated 
calorimeters. A schematic diagram of the differential compensated calorime- 
ter, where the sample is placed inside the feedback loop, is presented in Fig. 
4. The model is based on calorimetric vessels described elsewhere [2,8,19]. 
On the basis of this model the following equations can be written 

(50) 
dTsh.4 

Cm dt -+%4cmw- Tc)=qlN+qo”T 

c dTc 
CT + dT, - T,) - G&L-,, - T,) = 0 (51) 
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C 
d TUM 
- + aRMR(TRM - TR) = 0 IcM at 

d TR 
cR at p+aR(TR-~)-a~M~(T~M-TR)=O 

(52) 

(53) 

qo”T = k,(Tu - T,) (54) 

where CsM, CRM, Cc and C, are heat capacities of the sample material 
under investigation, reference material, calorimetric measuring cell and 
calorimetric cell, respectively; (~s~c, ffRMR, % and (Ye are heat exchange 
coefficients between the sample material and the calorimetric measuring cell, 
between the reference material and the calorimetric reference cell, between 
the calorimetric measuring cell and outside environment, and between the 
calorimetric reference cell and outside environment, respectively; TsM, TRM, 
T,, T, and To are the temperatures of the sample material, reference 
material, calorimetric measuring cell, calorimetric reference cell and environ- 
ment, respectively; and qour is the measured power (compensating power). 
For simplicity, it was assumed that there is no thermal effect in the reference 
material. On the basis of eqns. (50)-(53) and using procedures from a 
previous paper [18], the following equations are obtained for the measuring 
and reference cells, respectively 

dT, 
=aRCR~-+a~aRMC~ dt 

(55) 

By subtracting eqns. (55) and (56) by sides, then eliminating TR - T, and 
their time derivatives with the help of eqn. (54), and assuming, for simplicity, 
that the time constants and the heat exchange coefficients are the same for 
the measuring and reference cells, one obtains the following equation 

qOUT= -qIN - 
%MC+% 

ke, 

1 (57) 

which has the same form as the equation derived previously, but without an 
explicit consideration of the differential mounting. The time constants are 
defined as follows: rc = Cc/( (Ye + aSMC), rsM = Cs,/a,,,. 

A schematic diagram of the differential compensated calorimeter, where 
the sample is placed outside the feedback loop, is presented in Fig. 5. On the 
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oc SMC 

Fig. 5. A diagram of a differential power compensated calorimeter where the samples are 
outside the feedback loop. 

basis of this model the following equations can be written 

GM 

‘SM dt ~ + %Mc(%4 - Tc) +%40&M - r,> = qlN (58) 

dT, 
cc~+%(Tc- Tlbh4,&4- Tc)=qo,, (59) 

C d TRM -+~~i,&‘m- Tc)+‘yRMotCc T,)=O RM dt 

d TR 
CR dt ~ + a~(T~ - T,) -a,,,@,,, - TR) = 0 

where asMO and aRMO are the heat exchange coefficients between the sample 
and reference materials and the environment, respectively. As before, the 
measured signal is defined by eqn. (54). Using the same procedure, one can 
obtain the following equations for the measuring cell 

CSMCC d’Tc ~- 

%MC dt2 c SM dqou, +-_ 

aSMC dt (62) 

and for the reference cell 

‘RM’R d2TR 
-+ cRM 

aR + aRMR aRMR + ffRMO dTR 

aRMR dt2 [ ffRMR 
+ cR 

aRMR 1 dt 

az;;;o TR = 0 1 (63) 
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Therefore, for differential mounting the equation is as follows 

%MO 
qOUT= -qIN-- 

(YSMC qouT - 

%MC + %MO d9 OUT 

%MC rsM dt 

_ (%MC+%)(%MC+%) 

k&MC 

7sM1Cd:;y I c7sM+7CJd90uT 

dt 

4MC 

(a SMC + aC)bSMC + %MO) 
(64) 

The time constants have the following definitions: rc = Cc/( aSMC + a,-), 

‘SM = CSM/(aSMC + %MO ). When comparing eqn. (64) with that obtained by 
Randzio and Sunner, one can see that the differential mounting does not 
help very much when the sample and reference are not placed in the 
feedback loop. Independently of the gain of the feedback loop there will 
always be a static error related to the ratio between the heat exchange 
coefficients, aSMO and aSMC, and a dynamic error whose magnitude will 
depend on the ratio ( aSMc + (YsMO)/(YsMc and on the time constant of the 
sample. 

The above analysis is valid when compensation is only performed in the 
measuring cell. The reference cell is a pure reference. The proper setting of 
the value of U, (Fig. 4) permits both exothermic and endothermic effects to 
be compensated [20,21]. The above observations are correct, however, even 
when the recorded signal is a difference of powers developed in the reference 
and measuring cells [22]. It can be proved by analysing the terms in eqn. (64) 
which are not divided by k,,. If it is assumed that q1 is the power developed 
in the measuring cell and q2 that developed in the reference cell, then the 
recorded signal is 

qOUT = 41 1 + ( ~)+&$-q2(l+~)-~~ (65) 

If it is once more assumed that the heat exchange coefficients and the time 
constants of both cells are equal (an ideal differential mounting), equation 
(65) is reduced to the form 

qOUT = ‘4 ’ + 
( _sE)+3&y 

where Aq = q1 - q2. It is clear that the method of compensation, itself, does 
not eliminate the two terms which are independent of the gain of the 
feedback loop; only the proper placing of the sample in the calorimetric cell 
can result in an actual advantage of using the compensation method. Even if 
the sample is placed fully in the feedback loop, however, the reduction of the 
time constant cannot be very high since gain (k,,) is limited due to stability 
problems. As it has been shown experimentally [S], it is possible to use an 
additional dynamic corrector mounted in series with the feedback loop, as in 



231 

the diathermic method. However, the total reduction of the time constant is 
very similar to that in the diathermic method. Thus, from the point of view 
of dynamic errors in the time domain, described above, both methods 
(diathermic and compensated) have similar capabilities. 

As far as dynamic errors in the parameter space are concerned, the 
compensation method is much more advantageous than the diathermic 
method. The output sensitivity function of a compensated calorimeter de- 
fined in the time domain and its Bode sensitivity function defined in the 
frequency domain are as follows 

(67) 

(68) 

By applying the same procedure as in the case of the diathermic calorimeter, 
the relationship between the sensitivity functions can be written as 

Integration of eqn. (68) gives the actual value of the output signal of the 
compensated calorimeter in terms of the complex frequency 

and, hence, an equation for the relative parameter-induced error is obtained 

(71) 

When comparing eqn. (71), defining the relative parameter-induced error of 
the compensation method, with eqn. (44), defining a similar error of the 
diathermic method, one can see that in the former case an additional 
sensitivity function, Sg: (s), appears. On application of the compensation 
method to a calorimeter with one time constant (eqns. 21 and 49), this 
sensitivity function becomes 

q (s) = 1 + ?.oS 
1 +7coS+K0 

and the relative parameter-induced error is described by eqn. (73) 

s 

2 (1 + 2~o,~s) + A7c.s 

dyn.p = - 1 + 7c.oS + K, 

(74 

(73) 
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where K, is the total gain of the feedback loop at the nominal value of the 
heat exchange coefficient. Equation (73) was obtained by introducing eqns. 
(45), (46) and (72) into eqn. (71). It can be seen from eqn. (73) that in the 
compensation method the influence of changes in the time constant and heat 
exchange coefficient on the relative parameter-induced output error is re- 
duced by a factor whose magnitude is determined by the gain of the 
compensation loop. This is the main advantage of the compensation method 
over the diathermic one. 

LINEAR VARIATIONS OF INDEPENDENT THERMODYNAMIC VARIABLES 

As stated above, linear variations of independent thermodynamic varia- 
bles in scanning calorimetry are advantageous, since the description of the 
thermodynamic significance of the output signal is then easiest. As for power 
measurements, there are two methods of obtaining linear variations of 
independent thermodynamic variables: passive and active. Active program- 
ming is when the state of the interface directly influencing the substance 
under investigation is directly controlled according to a given set function of 
time. When this control is not direct, the programming is considered to be 
passive, for example, in the case of temperature programming, where the 
calorimetric block serves only as a heat sink and the temperature program is 
realized directly in the heating shield. In passive programming, it is very 
difficult to take into consideration all unforeseeable changes of the pro- 
grammed variable, caused, for example, by the change in the sample under 
investigation. In the case of active programming, this change is automatically 
compensated at the dynamic precision, determined by the quality of the 
programming system. Another difficulty lies in obtaining a uniform variation 
of the independent thermodynamic parameter over the whole of the sample 
investigated. A more detailed analysis is given below on the basis of our 
calorimeter [20,23]. 

Linear variation of temperature 

A large number of different systems of linear temperature programming 
have been described in the literature. The best are those in which the surface 
of heat exchange between the samples (reference and investigated) and the 
calorimetric block is directly and actively programmed. O’Neill had shown 
that in this case the calorimetric thermograms can be described quantita- 
tively [l]. The best known example of such a design is the calorimeter of 
Watson et al. [24]. Unfortunately, this construction can give good results 
only for very small samples. If the samples are too large, the condition of 
temperature uniformity cannot be satisfied; but often in practice much 
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Fig. 6. A diagram of a thermostat with controlled heat exchange. 

larger samples must be used. An example of a design of an actively 
programmed calorimetric thermostat for larger samples (l-10 cm’) and for 
large temperature intervals is schematically presented in Fig. 6 [25]. Only a 
model is presented to show some main features of the design. The essential 
concept is that the thermal action on the calorimetric cells is achieved 
through the formation of a heat exchange by direct control of the direction 
and intensity of thermal fluxes. The thermostat contains a privileged thermal 
circuit in which thermal resistance between the block and the environment is 
much smaller than the resistances of other possible thermal circuits. The 
privileged thermal circuit contains a controlled temperature source. This 
temperature source affects the thermal flux in the circuit such that the 
thermal gradient in the block is constant and small, and non-adiabatic 
conditions are maintained to ensure a continuous relationship between the 
set temperature of the block and the intensity of the thermal flux between 
the block and the heating shield. The above idea is achieved in the construc- 
tion, since the cylindrical metal block with holes for calorimetric cells has a 
heater mounted on its whole lateral surface. Two temperature sensors are 
placed in the block near its heating surface. The bottom and top surfaces of 
the cylindrical block are passive and, to reduce the heat exchange through 
them, the thermal resistances are increased by horizontal air spaces. The 
calorimetric block is placed coaxially in the heating shield. The thermal 
resistance of the thermal path containing the block and the heating shield is 
much smaller than that of the thermal path through the bottom and top 
surfaces of the block. The heating elements of the block and heating shield 
are connected through control loops and are controlled by separate con- 
trollers. Together with two temperature sensors placed in the block and the 
heating shield, they form the temperature source which maintains the set 
value of thermal flux between the block and the heating shield. This flux is 
decided by choosing a set value of the temperature difference, AT = T, - T,. 
The chosen value of AT must fulfil the following inequalities and must be as 
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small as possible 

c&Z - 73 + %(L - &) < ar< %(?I - r,) 

(YB (YB 
(74) 

where T,, TH and TO are the temperatures of the block, heating shield and 
environment, respectively, (Ye and (mu are the heat exchange coefficients 
between the block and the heating shield and the heating shield and 
environment, respectively. The second temperature sensor placed in the 
block controls the power developed in the heating element according to the 
desired time function: TB = T,(t). Any change in heat fluxes coming from 
the calorimetric vessels is automatically compensated by the main loop and 
the temperature of the calorimetric block is maintained according to the 
actual program value. The actively programmed thermostat described has an 
additional advantage: it can be (and is) used as an isothermal thermostat for 
pressure-scanning [2] or volume-scanning calorimetric measurements. 

Linear variations of pressure 

Pressure as an independent thermodynamic variable has two advantages: 
it is an intensive parameter and the propagation of its local changes is very 
fast (especially in fluid medium) over the whole volume. These features 
enable a pressure program to be achieved with all the elements of the 
programming system placed outside the calorimeter, the calorimetric vessels 
being connected to it through pressure-proof capillaries. Thus, the pressure 
system consists of an internal part introduced into the calorimeter and an 
external part placed outside the calorimeter. The pressure in such a system 
can be varied either by changing the volume or temperature of the external 
part, the internal part being kept under strictly isothermal conditions. In 
both cases the programming system should be active, i.e., the executing 
element must be controlled by the difference between the actual value 
resulting from the program and the actual pressure in the system. When the 
pressure program is realized through passive programming, e.g., by linear 
variation of volume or temperature of the external part, then a volume 
change in the substance under investigation causes the program to become 
nonlinear, and the resulting calorimetric thermogram is distorted. An obvi- 
ous example of such a situation was observed experimentally for the pres- 
sure-induced fusion of di-phenyl-ether [2]. Of course, even in the case of 
passive programming, one can obtain good results when the volume of the 
external part is a number of orders of magnitude larger. than the volume of 
the internal part. A similar situation can be observed in temperature pro- 
gramming when the large heat capacity of the calorimetric block is insensi- 
tive to heat fluxes coming from the much smaller heat capacity of the 
substance under investigation. However, in both cases the inertia of such 
systems is very high and from both the energetic and safety points of view 
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Fig. 7. A diagram and thermodynamic formulae for two methods of pressure transmission 

into the calorimetric vessels. 

such systems are much less advantageous than the corresponding active 
systems. 

The use of pressure as an independent thermodynamic variable has 
another characteristic feature: the method of its transmission into the sample 
under investigation has an enormous influence on the thermodynamic sig- 
nificance of the thermal effect generated or absorbed in the process [26]. 
There are two main methods of pressure transmission into the calorimeter: 
(1) through the liquid under investigation, or (2) by means of a piston 
placed in the calorimetric vessel. These two situations are schematically 
presented in Fig. 7. When pressure is transmitted through the liquid under 
investigation, its mass in the calorimetric vessel changes during the experi- 
ment; the volume, V,, in which it is contained remains almost constant and 
is determined in a separate calibration procedure. When pressure is pro- 
grammed as a linear function of time the power, in this particular case, is 
described by the following equation 

qT(p)= +I 25 i i aP T 

= - [ f v,7-ua,] (75) 

where (or is the volume thermal expansion of the substance under investiga- 
tion. When a similar experiment is performed with the use of a piston, the 
mass, expressed in numbers of moles, n, remains constant and the power is 
described by the following equation 

(76) 

Thus, it is clear that the experiment with constant mass gives information on 
the thermodynamic derivative itself, while that with constant experimental 
volume gives information on the ratio of the thermodynamic derivative to 
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the molar volume of the substance under investigation. In practice, in 
pressure-controlled calorimeters these two situations very often coexist, for 
example, when the substance investigated is placed in a bellows and the 
pressure is transmitted through a liquid [2]. 

For comparison, in Fig. 7 formulae are also given for the stepwise 
scanning of pressure (the integral form of pressure-controlled scanning 
calorimetry) called the piezothermal method by Ter Minassian and Pruzan 
[27]. It can be seen that in this case one obtains information on the mean 
values of thermodynamic quantities over the range of applied pressure steps. 
A similar situation exists in temperature-controlled scanning calorimetry 

THE SCANNING CALORIMETRY OF FIRST-ORDER PHASE TRANSITIONS 

It has already been stated that the scanning calorimeter is an instrument 
which measures the power generated or absorbed by a process of linear 
variation of an independent thermodynamic variable. In the preceding 
paragraphs these two functions were analysed separately. In the practical 
experiment these functions must be considered together and should be 
correctly adapted to the actual metrological requirements. Powers q,(T), 

qv( T), qr( p), and qr( V) are the input signals and they are observable only 
by means of the calorimetric output signal. Thus, all deformations of the 
input signal by the calorimeter are very important in the interpretation of the 
results of a scanning calorimetry experiment. A detailed analysis is presented 
below for the case of a first-order phase transition of a pure substance 
induced by pressure and temperature. The analysis given by O’Neill [l] for 
temperature-induced fusion showed that the power of fusion developed in 
the calorimetric vessel for a small time increment can be described by the 
following equation 

(77) 

In the case of pressure-induced fusion this power is described by the 
following equation [3] 

(78) 

where (dp/dT),T = AS/AV 1 rT for the phase change in the substance 
investigated. 

Equations (77) and (78) correctly describe the power of fusion to 1% error 
if the mass of the sample, m, placed in the calorimetric vessel fulfils the 
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following relation [ 31 

m < 0.01 A2pXk, (7% 

where A is the active area of heat exchange in the calorimetric vessel, p is the 
density of the liquid layer and X is the liquid heat conductivity of the 
substance investigated. It is worth noting that the power of fusion described 
by eqns. (77) and (78) does not depend on the physical parameters of the 
substance investigated. On the other hand, the size of the sample depends 
not only on the heat exchange conditions in the calorimetric vessel ( A*k,) 
but also on the product (pX) of the heat conductivity of the substance 
investigated and its density. Equations (77) and (78) describe the power 
absorbed during fusion in the calorimetric vessel; however, it is observable 
only by means of the calorimetric output signal. When investigating this 
problem more carefully, one should notice that eqns. (77) and (78) are very 
similar to eqn. (29, describing the model input signal analysed in this paper. 
The parameters r and d in eqn. (77) have the following physical meanings 
for temperature-induced fusion 

b r=-- 
ks 

and d= 

and for pressure-induced fusion (eqn. 78) 

a 
r= and d= [ F( gjTT]“* 

(80) 

(81) 

where 1 is the specific heat of fusion of the substance under investigation. 
When introducing these quantities into eqn. (25) one can directly use the 
model considerations concerning the dynamic errors presented above. Of 
course, it must be assumed that the values of r and d remain constant 
during fusion. From a practical point of view, especially interesting are the 
two cases presented in Figs. 3a and in 3d. The figures have been made using 
reduced time (time divided by the main time constant of the calorimeter), so 
they have a universal meaning. One can also easily transform the abscissa to 
temperature or pressure values by using the rates of linear variations of these 
parameters. One can distinguish in Fig. 3a two important areas of dynamic 
error in the time domain: (1) the dynamic error in the course of fusion, and 
(2) the dynamic error after the end of fusion. From a practical point of view, 
the second area is of least importance, while the first one is of prime 
importance for the application of scanning calorimetry to purity determina- 
tions and, generally, to investigations of phase transitions. It is worth noting 
from Fig. 3a and eqn. (254, together with eqns. (80) and (81), that the time 
constant of the calorimetric vessel has an influence on both the shape of the 
thermogram of fusion and the value of the intercept of the straight stationary 
line of the thermogram with the time (pressure, temperature) abscissa. 
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Thus, use of this technique in comparative investigations always requires 
such standards for such quantities, so as to not change the time constant of 
the calorimeter with respect to the sample under investigation. Otherwise, 
errors are made in the determination of fusion parameters (temperature, 
pressure), which can even lead to the discovery of impurities in a pure 
substance, and vice versa, or to their interpretation as strange melting 
phenomena. The best technique is, however, to reduce the time constant of 
the calorimeter properly; as a result, not only are the dynamic errors during 
the course of fusion smaller, but also the dynamic error represented by the 
second area in Fig. 3a is reduced and the measurement time is shortened. 
From Fig. 3d one can make some conclusions concerning the dependence of 
the relative dynamic error on the experimental properties. It can be seen that 
the relative dynamic error is always reduced when the ratio d/r, is high. 
Therefore, from this point of view it is advantageous to reduce the time 
constant of the calorimeter as much as possible and to increase the period, 
d. Using eqns. (80), (81) and (28) or (30), one can choose, for a given 
experiment, a value of the rate of variation of a thermodynamic variable so 
as to minimise the dynamic error or to achieve a compromise between the 
dynamic precision needed and the time devoted to the experiment itself. 
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LIST OF SYMBOLS 

active area of the calorimetric vessel (cm*) 
rate of linear variation of pressure (Pa s-l) 
actual parameter vector 
initial parameter vector 
coefficient of heat exchange between the calorimetric block 
and heating shield (W K-‘) 
coefficient of heat exchange between the measuring vessel and 
thermostat (W K-‘) 
coefficient of heat exchange between the heating shield and 
outside environment (W K-l) 
coefficient of heat exchange between the reference vessel and 
thermostat (W K-‘) 
coefficient of heat exchange between the reference material 
and environment (W K-‘) 
coefficient of heat exchange between the reference material 
and reference vessel (W K-‘) 
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coefficient of heat exchange between the sample material and 
measuring vessel (W K-r) 
coefficient of heat exchange between the sample material and 
environment (W K-‘) 
isobaric volume thermal expansion of the substance under 
investigation (K-l) 
rate of linear variations of temperature (K s-r) 
rate of linear variations of volume (cm3 s-l) 
heat capacities of the measuring and reference vessels, respec- 
tively (J K-‘) 
heat capacities of the sample and reference materials, respec- 
tively (J K-‘) 
period of the input power evolution (s) 
absolute dynamic error in the time domain 
relative parameter induced error 
relative quadratic error in the time domain 
transfer function of a passive system 
transfer function of the calorimeter 
complex dynamic gain of the calorimeter 
molar enthalpy (J mol-‘) 
transfer function of an active system 
transfer function of the power compensated calorimeter 
imaginary number 
total static gain of the calorimeter 
static gain of the calorimetric amplifier (W K-‘) 
static gain of the calorimeter (K W-‘) 
specific heat of fusion of the substance under investigation (J 

g-7 
heat conductivity of the substance under investigation in the 
liquid state (W cm-’ K-‘) 

mass (g) 
number of moles (mol) 
angular frequency (rad s- ’ ) 

pressure (Pa) 
molar heat (J mol- ‘) 
input power signal (W) 
power output signal of the compensated calorimeter (W) 
isobaric molar power (W mol- ’ ) 

qr( p),qr( V) isothermal molar powers (W mol- ‘) 

q,(T) isochoric molar power (W mol- ’ ) 
r rate of linear power variation (W s-r) 

P density of the liquid layer (g cmp3) 
S molar entropy (J mol-’ K-‘) 
S Laplace operator 
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sn(f( (s) 

s;; (s) 

s: (s) 

TSM ‘TN 

T, 
t 

TC_,TR 

‘RM”SM 

8 

I/ 

V 

V,: 

sensitivity function of the diathermic calorimeter 

sensitivity function of the diathermic calorimeter with respect 
to the heat exchange coefficient 
sensitivity function of the diathermic calorimeter with respect 
to the time constant 
sensitivity function of the compensation loop 
output sensitivity function defined in the time domain 
temperature (K) 
temperatures of the measuring and reference vessels, respec- 
tively (K) 
temperature of the sample and reference materials, respec- 
tively (K) 
temperature of the thermostat (K) 
time (s) 
time constants of the measuring and reference vessels, respec- 
tively (s) 
time constants of the reference and sample materials, respec- 
tively (s) 
output signal of the differential diathermic calorimeter (K) 
molar internal energy (J mol-‘) 
molar volume (cm3 mol-‘) 
internal volume of the calorimetric vessel (cm3) 
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