MOLECULAR INTERACTIONS IN TERNARY MIXTURES OF NON-ELECTROLYTES: MOLAR EXCESS VOLUMES

R.K. NIGAM * and SADHNA AGGARWAL

Department of Chemistry, Maharshi Dayanand University, Rohtak 124 001 (India) (Received 10 January 1985)

ABSTRACT

Molar excess volumes, V_{ijk}^{E} , of 1,2-dichloroethane (i)+pyridine (j)+ α -picoline (k), + *n*-heptane (j)+pyridine (k), + α -picoline (k), *n*-heptane (i)+pyridine (j)+ α -picoline (k), aniline (i)+pyridine (j)+ α -picoline (k) and + γ -picoline (k) mixtures have been measured dilatometrically at 298.15 K. The data have been examined in terms of the Sanchez and Lacombe theory and the graph-theoretical approach and they were found to be described better by the latter. Self- and cross-volume interaction coefficients, V_{jk} , V_{jjk} and V_{jkk} , etc., have also been determined and the values utilized to study molecular interactions between the *j* th and *k* th in the presence of the *i*th molecular species in these i + j + k mixtures.

INTRODUCTION

In a binary i + j mixture, i-i and j-j contacts in the pure components iand j are replaced by i-j contacts in the mixture. If interactions in a ternary i+j+k mixture are assumed to be closely dependent on the interactions in the constituent i+j, j+k and i+k mixtures, it should be possible to evaluate the thermodynamic excess functions for ternary mixtures of nonelectrolytes when the corresponding functions for the binary i+j, j+k and i+k mixtures are known.

Singh and Sharma [1] recently employed a graph-theoretical approach that utilises connectivity parameters of the third degree, ${}^{3}\xi_{i}$, which successfully describes the molar excess volumes, $V^{\rm E}$, of ternary mixtures of non-heterocyclic non-electrolytes. Lacombe and Sanchez [2,3] have also developed a theory of fluid mixtures which suggests that the thermodynamic properties of ternary mixtures of non-electrolytes are determinable from the corresponding properties of the constituent binary mixtures. This prompted us to study the molar excess volumes, $V^{\rm E}_{ijk}$, of some ternary mixtures of non-electrolytes further and to analyse data in terms of (i) the Lacombe and Sanchez theory, and (ii) the graph-theoretical approach of fluid mixtures.

^{*} Author for correspondence.

EXPERIMENTAL

1,2-Dichloroethane, pyridine, α - and γ -picolines, aniline and *n*-heptane (all BDH, Analar grade) were purified by standard procedures [4]. The purity was checked by measuring their densities at 293.15 ± 0.01 K, which agreed well with the corresponding literature values [4].

Molar excess volumes, V_{ijk}^{E} , were determined in a dilatometer similar to that used by Brown and Smith (1962) [4a], the difference being that there were now three limbs for the three components. The temperature of the water bath was controlled to within less than ± 0.01 K by means of a toluene regulator, and the change in the level of the liquid in the dilatometer capillary was measured by a cathetometer that could be read to ± 0.001 cm. Further, to ensure the complete mixing of the components in the capillary, the dilatometer was placed in a cold bath, so that there was a minimum amount of liquid in the capillary, and then returned to the experimental water bath. This process was repeated two or three times. The uncertainty in the measured V_{ijk}^{E} values is ~ 0.55% at most.

RESULTS

The V_{ijk}^{E} data for the various ternary (i + j + k) mixtures as a function of composition at 298.15 K are recorded in Table 1 and shown graphically in Figs. 1–6. These data were expressed as [1]

$$V_{ijk}^{E} = x_{i}x_{j} \left[\sum_{n=0}^{2} A_{ij}^{n} (x_{i} - x_{j})^{n} \right] + x_{j}x_{k} \left[\sum_{n=0}^{2} A_{jk}^{n} (x_{j} - x_{k})^{n} \right] \\ + x_{i}x_{k} \left[\sum_{n=0}^{2} A_{ik}^{n} (x_{i} - x_{k})^{n} \right] + x_{i}x_{j}x_{k} \left[\sum_{n=0}^{2} A_{ijk}^{n} (x_{j} - x_{k})^{n} x_{i}^{n} \right]$$
(1)

Where x_i and x_j are the mole fractions of the *i*th and *j*th components in the i+j+k mixture, and A_{ij}^n (n = 0-2), etc., are parameters characteristic of the binary (i+j), etc., mixtures. The A_{ijk}^n (n = 0-2) parameters in eqn. (1) were evaluated by fitting

$$\left\{ V_{ijk}^{\rm E} - x_i x_j \left[\sum_{n=0}^{2} (x_i - x_j)^n A_{ij}^n \right] - x_j x_k \left[\sum_{n=0}^{2} (x_j - x_k) A_{jk}^n \right] - x_i x_k \left[\sum_{n=0}^{2} (x_i - x_k)^n A_{ik}^n \right] \right\} / x_i x_j x_k$$

data to

$$\left[\sum_{n=0}^{2} A_{ijk}^{n} (x_j - x_k)^n x_i^n\right]$$

TABLE 1

Comparison of the measured V_{ijk}^{E} values for the various (i + j + k) ternary mixtures at 298.15 and 308.15 K with their corresponding V_{ijk}^{E} values as evaluated from the graph theory and Sanchez and Lacombe theory

<i>x</i> _{<i>i</i>}	$x_j \qquad V_{ijk}^{\mathbf{E}} \; (\mathrm{cm}^3 \; \mathrm{mol}^{-1})$					
		Graph	Expt.	Sanchez and Lacombe		
1,2-Dichlo	roethane (i) +	pyridine $(j) + \alpha$ -pico	line (k) at 29	8.15 K		
$\alpha_{ij} = -7.2$	00 (-2.259) c	$m^3 mol^{-1}; \ \alpha_{jk} = -2.$	6088 (-0.434	4) $cm^3 mol^{-1}$;		
$\alpha_{ik} = -1.8$	517 (~11.524) cm ³ mol ^{-1}				
0.0299	0.0660	0.006 (0.035)	0.010	-0.239		
0.0441	0.0891	0.027 (0.047)	0.013	-0.314		
0.0591	0.0947	0.034 (0.052)	0.019	-0.421		
0.0714	0.0596	0.038 (0.038)	0.019	-0.339		
0.0784	0.3378	0.047 (0.141)	0.040	-0.084		
0.1778	0.0297	0.083 (0.037)	0.052	-0.463		
0.2022	0.1170	0.093 (0.083)	0.067	-0.341		
0.2080	0.1018	0.095 (0.077)	0.068	-0.348		
0.2095	0.7310	0.055 (0.243)	0.137	0.512		
0.2184	0.3827	0.089 (0.194)	0.098	0.046		
0.3494	0.4800	0.096 (0.259)	0.178	0.281		
0.4470	0.3502	0.117 (0.230)	0.185	0.185		
0.4678	0.3706	0.112 (0.241)	0.200	0.237		
0.5771	0.2417	0.127 (0.187)	0.183	0.167		
0.7520	0.1502	0.102 (0.132)	0.151	0.272		
1,2-Dichlo	roethane (i) +	<i>n</i> -heptane (j) +pyric	line (k) at 29	8.15 K		
$\alpha_{ij} = -94.$	4958 cm ³ mol	⁻¹ ; $\alpha_{ik} = -25.69$ (-	1.327) cm ³ m	$ol^{-1};$		
$\alpha_{ik} = -7.2$	200 (- 2.259) c	$cm^3 mol^{-1}$				
0.0369	0.8619	0.122 (0.948)	0.239	-0.478		
0.0568	0.8951	0.186 (1.354)	0.235	-0.515		
0.0621	0.8551	0.219 (1.835)	0.268	-0.443		
0.1034	0.8720	0.285 (1.346)	0.296	-0.410		
0.1081	0.0595	0.313 (1.389)	0.104	0.503		
0.1192	0.6755	0.277 (1.763)	0.391	-0.191		
0.1462	0.7521	0.211 (0.968)	0.419	-0.236		
0.1618	0.4608	1.007 (3.387)	0.380	-0.030		
0.1910	0.1736	0.501 (2.785)	0.215	0.326		
0.2050	0.1004	0.517 (2.456)	0.181	0.408		
0.3221	0.3615	0.548 (2.236)	0.356	0.214		
0.3701	0.2008	0.673 (2.461)	0.344	0.303		
0.4065	0.4258	0.454 (1.387)	0.542	0.253		
0.4524	0.1626	0.723 (2.228)	0.336	0.341		
0.6550	0.2009	0.498 (1.072)	0.412	0.445		
0.7793	0.0991	0.450 (0.842)	0.260	0.453		
0.8821	0.0695	0.232 (0.364)	0.167	0.471		
1,2-Dichlo	roethane (i) +	<i>n</i> -heptane (j) + α -pi	coline (k) at 2	298.15 K		
$\alpha_{ij} = -94.$.4958 cm ³ mol	$\alpha_{jk} = -5.933 (-$	5.078) cm ³ m	ol ⁻¹ ;		
$\alpha_{ik} = -1.8$	3517 (-11.524) cm ³ mol ^{-1}				
0.0474	0.8514	0.389 (0.201)	0.216	0.129		
0.0666	0.9121	0.322 (0.181)	0.195	0.358		

$\overline{x_i}$	<i>x_j</i>	$V_{ijk}^{E} (\mathrm{cm}^3 \mathrm{mol}^{-1})$				
		Graph	Expt.	Sanchez and Lacombe		
0.0752	0.0492	0.420 (0.254)	0.016	-0.313		
0.0828	0.8310	0.411 (0.270)	0.273	0.252		
0.1048	0.7829	0.422 (0.336)	0.320	0.231		
0.1329	0.848	0.691 (0.389)	0.033	-0.297		
0.1852	0.6128	0.703 (0.503)	0.393	0.147		
0.1864	0.5269	0.852 (0.617)	0.354	0.012		
0.2814	0.1694	1.149 (0.535)	0.104	-0.154		
0.2881	0.5428	0.726 (0.449)	0.454	0.381		
0.3343	0.3175	1.122 (0.575)	0.316	0.084		
0.3676	0.4001	0.958 (0.501)	0.425	0.326		
0.5574	0.0800	1.1417 (0.345)	0.121	0.205		
0.6628	0.2024	0.846 (0.281)	0.360	0.734		
0.8057	0.0705	0.839 (0.176)	0.177	0.693		
n-Heptane	e(i)+pyridine	$(j) + \alpha$ -picoline (k)	at 298.15 K			
$\alpha_{ij} = -25$.69 (-1.327) c	$m^3 mol^{-1}; \ \alpha_{jk} = -2$	2.6088 (-0.434	4) cm ³ mol ⁻¹ ;		
$\alpha_{ik} = -5.5$	933 (<i>-</i> 5.078) c	$m^3 mol^{-1}$				
0.0370	0.6448	0.064 (0.090)	-0.001	0.455		
0.0412	0.0974	0.045 (0.33)	-0.002	-0.290		
0.0575	0.1062	0.057 (0.39)	0.001	-0.294		
0.0652	0.0354	0.052 (0.024)	0.002	-0.404		
0.0858	0.0932	0.073 (0.043)	0.007	-0.413		
0.0882	0.0584	0.070 (0.035)	0.008	-0.364		
0.0990	0.3218	0.095 (0.094)	-0.005	-0.046		
0.1114	0.8050	0.039 (0.131)	-0.006	-0.653		
0.1318	0.1047	0.101 (0.057)	0.021	-0.389		
0.1932	0.1970	0.133 (0.093)	0.046	-0.312		
0.2754	0.5507	0.103 (0.194)	-0.160	0.268		
0.4984	0.2523	0.217 (0.074)	0.181	-0.582		
0.5592	0.0776	0.212 (0.084)	0.215	-0.481		
0.7208	0.0558	0.178 (0.065)	0.237	-0.351		
0.8484	0.0662	0.096 (0.056)	0.181	-0.101		
Aniline (<i>i</i>)+pyridine (j)	$+ \alpha$ -picoline (k) at	298.15 K			
$\alpha_{ij} = (7.50$)5) cm ³ mol ^{-1} ;	$\alpha_{jk} = -2.6088 (-0)$).434) cm³ mol	l ⁻¹ ;		
$\alpha_{ik} = 62.7$	353 (4709.2) cr	$n^3 \text{ mol}^{-1}$				
0.0565	0.0431	(-6.454)	-0.141	0.081		
0.0651	0.0730	(-10.667)	-0.161	0.192		
0.0983	0.6585	(-42.065)	-0.243	0.364		
0.1052	0.0614	(-9.036)	-0.241	0.411		
0.1121	0.8213	(-28.126)	-0.211	0.533		
0.1167	0.0841	(-12.137)	-0.271	0.601		
0.1569	0.1136	(-16.184)	-0.345	-0.442		
0.2212	0.2836	(-33.273)	-0.479	-0.820		
0.2272	0.1646	(-21.936)	-0.442	-0.471		
0.2433	0.1640	(-22.079)	-0.462	-0.506		
0.3042	0.1744	(-22.606)	-0.509	0.566		
0.3192	0.1450	(-20.478)	-0.500	0.615		

TABLE 1 (continued)

x _i	x _j	$V_{ijk}^{\mathbf{E}}$ (cm ³ mol ⁻¹)			
		Graph	Expt.	Sanchez and Lacombe	
0.4339	0.2500	(-31.916)	-0.569	-0.558	
0.4350	0.1811	(-23.498)	-0.548	-0.647	
0.4929	0.3817	(-38.416)	-0.420	-0.394	
0.7851	0.1289	(-16.718)	-0.216	-0.621	
Aniline (i)	+ pyridine (j	$)+\gamma$ -picoline (k) a	t 298.15 K		
$\alpha_{ii} = (7.505)$	5) cm ³ mol ⁻¹	$\alpha_{ik} = -6.2114(-$	0.858) cm ³ mol	-1,	
$\alpha_{ik} = 36.02$	62 (280.42) cr	$n^3 mol^{-1}$			
0.0254	0.0764	(-0.809)	-0.042	0.184	
0.0498	0.0271	(-0.304)	-0.139	0.211	
0.0635	0.0914	(-0.954)	-0.111	0.082	
0.0800	0.0488	(-0.534)	-0.141	0.189	
0.1260	0.7680	(-2.320)	-0.191	0.242	
0.1471	0.1408	(-1.374)	-0.223	0.144	
0.1532	0.3158	(-2.581)	-0.216	0.144	
0.2337	0.1790	(-1.671)	-0.283	- 0.079	
0.2357	0.5025	(-2.967)	-0.283	-0.058	
0.2374	0.3002	(-2.431)	-0.290	-0.073	
0.2470	0.5097	(-2.966)	-0.290	-0.086	
0.4534	0.2883	(-2.187)	-0.318	-0.486	
0.5648	0.1486	(-1.290)	-0.274	- 0.638	
0.7470	0.0819	(-0.735)	-0.152	- 0.795	

TABLE 1 (continued)

Fig. 1. Molar excess volumes, V^{E} , of 1,2-dichloroethane (*i*)+pyridine (*j*)+ α -picoline (*k*) at 298.15 K.

Fig. 2. Molar excess volumes, V^{E} , of 1,2-dichloroethane (i) + *n*-heptane (j) + pyridine (k) at 298.15 K.

Fig. 3. Molar excess volumes, $V^{\rm E}$, of 1,2-dichloroethane (i) + n-heptane $(j) + \alpha$ -picoline (k) at 298.15 K.

Fig. 4. Molar excess volumes, V^{E} , of *n*-heptane (*i*)+pyridine (*j*)+ α -picoline (*k*) at 298.15 K.

Fig. 5. Molar excess volumes, V^{E} , of aniline (i)+pyridine (j)+ α -picoline (k) at 298.15 K.

Fig. 6. Molar excess volumes, $V^{\rm E}$, of aniline (i)+pyridine (j)+ γ -picoline (k) at 298.15 K.

by the method of least squares, and are recorded in Table 2 together with standard deviations, $\sigma(V_{ijk}^{E})$, defined as

$$\left[\sum \left(V_{ijk(\exp.)}^{\rm E} - V_{ijk(\text{calc.from eqn.1})}^{\rm E}\right)^2 / (m-p)\right]^{1/2}$$
(2)

TABLE 2

 V_{ijk}^0 , V_{ijk}^1 and V_{ijk}^2 parameters (cm³ mol⁻¹) of eqn. (3) along with the standard deviation, $\sigma(V_{ijk}^E)$ (cm³ mol⁻¹) of the molar excess volume for the (i + j + k) mixtures at 298.15 K

System	Temp. (K)	V^0_{ijk}	V_{ijk}^1	V_{ijk}^2	$\sigma(V_{ijk}^{\rm E})$
1,2-Dichloroethane (i) + pyridine (j)					
$+ \alpha$ -picoline (k)	298.15	- 1.0643	1.6922	25.0235	0.001
1,2-Dichloroethane (i) + <i>n</i> -heptane (j)					
+ pyridine (k)	298.15	-2.800	-6.200	-93.400	0.002
1,2-Dichloroethane (i) + <i>n</i> -heptane (j)					
+ α -picoline (k)	298.15	- 4.090	0.100	-158.600	0.002
<i>n</i> -Heptane (<i>i</i>) + pyridine (<i>j</i>)	200.15	1 (20)	61 11 (222 0	0.002
+ α -picoline (k)	298.15	-4.620	-51.114	-232.0	0.002
Aniline (i) + pyridine (j) + α -picoline (k)	298.15	- 5.700	-2.800	145 000	0.003
Aniline (i) + pyridine (j)	-, 5.10	2.700	2.000	1.0.000	0.005
$+\gamma$ -picoline (k)	298.15	- 1.9925	4.7533	14.552	0.003

where *m* is the number of data points and *p* the number of adjustable parameters in eqn. (1). The parameters A_{ij}^n , A_{jk}^n , A_{ik}^n , etc., for the i + j, j + k and k + i binary mixtures were taken from the literature [4,5].

DISCUSSION

We are unaware of any previous V_{ijk}^{E} data with which to compare the present results for i + j + k mixtures. The V_{ijk}^{E} data for the ternary mixtures were first analysed [1] using the Lacombe and Sanchez [2,3] theory of classical fluids and their mixtures.

However, it was observed that the right-hand side (RHS) of the equation of state (eqn. 34a in ref. 1) varied from 0.0124 to 0.0441 for the various binary mixtures. Since, therefore, the i + j, j + k and i + k mixtures do not satisfy the equation of state for binary mixtures, the resulting i + j + kternary mixture would also not satisfy the equation of state. Thus, $V_{ijk}^{\rm E}$ values evaluated in the manner originally proposed by Lacombe and Sanchez [3] would not compare well with the corresponding experimental values. The equation of state for a ternary mixture has been shown [1] to be given by

$$\bar{\rho}_{ijk}^{2} + p_{ijk} + (RT/\epsilon_{ijk}^{*}) \left[\ln(1 - \bar{\rho}_{ijk}) + (1 - r_{ijk}^{-1}) \bar{\rho}_{ijk} \right]$$

$$= 1/3 \left(\sum \text{RHS of the equation of state for } i + j, \ j + k \text{ and } i + k \text{ mixtures} \right)$$
(3)

where $\bar{\rho}_{ijk}$ and ϵ^*_{ijk} have the same significance as explained earlier [1]. Once this equation of state for a ternary mixture has been established, $\bar{\rho}_{ijk}$ and, hence, $V^{\rm E}_{ijk}$ for the mixture at any composition and temperature can be evaluated readily. $V^{\rm E}_{ijk}$ values thus obtained for the various ternary mixtures are recorded in Table 1, where they are also compared with the corresponding experimental values.

Examination of Table 1 reveals that V_{ijk}^{E} values calculated at 298.15 K are of the right order of magnitude, but that the quantitative agreement is not very impressive. In some cases even the sign is not predicted correctly. A possible reason for this failure may be the assumption that the right-hand side of eqn. (3) for the i + j, j + k and i + k binary mixtures comprising the i + j + k mixture is constant over the entire range of x_i , x_j and x_k at the given temperature. Nevertheless, the theory makes a significant theoretical attempt to evaluate V_{ijk}^{E} data for ternary mixtures of non-electrolytes from a knowledge of their binary interaction coefficients.

The V_{ijk}^{E} data for the various ternary mixtures were then analysed [1] in terms of the graph-theoretical approach [6]. V_{ijk}^{E} according to this approach is given by

$$V_{ijk}^{\rm E} = \alpha_{ijk} \left(1 / \sum x_i^3 \xi_i - \sum x_i / {}^3 \xi_i \right) \tag{4}$$

where α_{ijk} is a constant characteristic of the i+j+k mixture and is assumed to be independent of composition, and x_i , etc., are the mole fractions of the *i*th, etc., components in the mixture. The term ${}^{3}\xi_i$ is a connectivity parameter of the third degree for the *i*th component, and is defined [7] by

$${}^{3}\xi_{i} = \sum_{l < m} \sum_{m < n} \sum_{n < o} \left(\delta_{l} \delta_{m} \delta_{n} \delta_{o}\right)^{-1/2}$$
(5)

where δ_l , δ_m , δ_n , δ_o , etc., denote the degrees of the *l*th, *m*th, *n*th and *o*th, etc., vertices of the graph for the *i*th molecule [8] and were evaluated in the manner described earlier [6].

Evaluation of V_{ijk}^{E} for a ternary mixture thus requires a knowledge of α_{ijk} for the mixture. The latter was shown [1] to be given by

$$\alpha_{ijk} = \frac{1}{5} (\alpha_{ij} + \alpha_{jk} + \alpha_{ik})$$
(6)

so that eqn. (4) reduces to

$$V_{ijk}^{\mathsf{E}} = 0.2(\alpha_{ij} + \alpha_{jk} + \alpha_{ik}) \left(1 / \sum x_i^3 \xi_i - \sum x_i / {}^3 \xi_i \right)$$
(7)

Thus, from a knowledge of the binary interaction coefficients α_{ij} , α_{jk} and α_{ik} for the i + j, j + k and i + k binary mixtures, V_{ijk}^{E} for a ternary i + j + k mixture can be evaluated readily if ${}^{3}\xi_{i}$ parameters for the constituent molecules are known.

Since aniline, pyridine and α - and γ -picolines undergo reactions that are characteristic of the aromatic ring (disregarding the basic nature of these compounds for the present analysis), and as their molar volumes are almost the same (~10% lower) as those of benzene and toluene, the ${}^{3}\xi_{i}$ parameters for pyridine and picolines were taken to be the same as those for benzene and toluene, respectively [6]. However, such an approach can be highly restrictive, and Singh [9] has recently advocated the use of δ^{v} (valence δ , which explicitly reflects the valency of the atoms forming the bonds) rather than δ to evaluate ${}^{3}\xi_{i}$ in calculating H^{E} and V^{E} values for binary mixtures of non-electrolytes. In the present analysis we thus evaluated ${}^{3}\xi_{i}$ parameters for the constituent molecules of the ternary mixtures using both these approaches and then utilised both sets of results to calculate V^{E}_{ijk} data for the mixtures. The V^{E}_{ijk} values thus obtained are recorded in Table 1 (V^{E}_{ijk} values obtained from eqn. (4) using ${}^{3}\xi$ parameters evaluated from δ^{v} are enclosed in parentheses), where they are also compared with the corresponding experimental values.

Examination of Table 1 reveals that the V_{ijk}^{E} (δ or δ^{v}) values calculated from eqn. (4) for all the present ternary mixtures correctly predict the sign of experimental V_{ijk}^{E} values; the quantitative agreement (for all except aniline (*i*) + pyridine (*j*) + α -picoline (*k*) and + γ -picoline (*k*) mixtures), however, is dictated by x_i , x_j and x_k . This suggests that, depending upon x_i , x_j , x_k , either the C–C skeleton or the valency of individual atoms in the molecular graph of the constituent molecules dictate the nature of packing of *i*, *j* and *k* components in the (i + j + k) mixtures. For aniline (i) + pyridine (j) + α -picoline (k) and + γ -picoline (k) mixtures, the calculated V_{ijk}^{E} values are about 7 times more than the corresponding experimental values. This suggests that the addition of pyridine and α - or γ -picoline to aniline causes stronger interaction between them than that envisaged by the theory.

 $V_{ijk}^{\rm E}(T,x_i,x_j)$ data were next analysed in terms of the Mayer-McMillan formalism [10] to gain information about the effect of *i* on the *j*-*j* and *k*-*k*, etc., interactions. According to this formalism [11], an excess function, say, $V^{\rm E*}$, of a solution containing *n* solute species can be expressed as

$$V^{E*} = V - V_{sol} - \sum_{i=1}^{n} V_i^0 m_i$$
(8)

$$=\sum_{i=1}^{n}\sum_{i=1}^{n}V_{ij}m_{i}m_{j}+\sum_{i=1}^{n}\sum_{i=1}^{n}\sum_{i=1}^{n}V_{ijk}m_{i}m_{j}m_{k}+\dots$$
(9)

where V and V^{E*} are the volume and excess volume, respectively, of a solution containing 1 kg of solvent and m_1, \ldots, m_n moles of each solute species; V_{sol} is the standard volume of 1 kg of the solvent; and V_i^0 is the partial molal volume of each solute. For a ternary solution, eqn. (9) reduces to

$$V^{E*}(m_j, m_k) = V_{jj}m_j^2 + 2V_{jk}m_jm_k + V_{kk}m_k^2 + V_{jjj}m_j^3 + 3V_{jjk}m_j^2m_k + V_{jkk}m_jm_k^2 + V_{kkk}m_k^3$$
(10)

and for two binary (i + p), (p = j or k) solutions, eqn. (9) yields

$$V^{\mathsf{E}}(m_{j}) = V_{jj}m_{j}^{2} + V_{jjj}m_{j}^{3}$$
(11)

$$V^{\rm E}*(m_k) = V_{kk}m_k^2 + V_{kkk}m_k^3$$
(12)

In order to calculate the cross-volume coefficients V_{jk} , V_{jkk} and V_{jjk} from eqn. (10), we used an auxiliary function, ΔV^{E*} , defined [12] as

$$\Delta V^{E*} = V^{E*}(m_j, m_k) - V^{E*}(m_j) - V^{E*}(m_k)$$
(13)

which, in view of eqns. (11) and (12), yields

$$\Delta V^{\text{E}*}(m_j, m_k)^{-1} = 2V_{jk} + 3V_{jjk}m_j + 3V_{jkk}m_k + \dots$$
(14)

Thus, if $V^{E*}(m_j, m_k)$ data for the (i + j + k) ternary mixture, along with the $V^{E*}(m_j)$ and $V^{E*}(m_k)$ data for (i + j) and (i + k) binary mixtures are known, it should be possible to evaluate the cross-volume coefficients. Ideally, $V^{E*}(m_j, m_k)$, $V^{E*}(m_j)$ or $V^{E*}(m_k)$ data for dilute solutions should be utilized to evaluate these cross-volume coefficients. This led us to use $V^{E*}(m_j, m_k)$ data for a ternary mixture in the range $0.025 \le x_j$, $x_k \le 0.11$ (corresponding to $0.2 \le m_j$, m_k) with the corresponding $V^{E*}(m_p)$ (p = j or k) data of the (i + p) binary mixtures in the range $0.2 \le m_p$ to calculate V_{jk} , V_{jjk} and V_{jkk} from eqn. (14) by the method of least squares. For this purpose, $V_{ijk}^{E}(x_j, x_k)$ data (cm³ mol⁻¹) of the (i + j + k) mixture were converted to $V^{E*}(m_j, m_k)$ data (cm³ mol⁻¹; mol kg⁻¹ of i) by means of $V^{E*}(m_j, m_k)$ cm³ mol⁻¹ (mol kg⁻¹ of i) $= \left[V^{E}(x_j, x_k) \operatorname{cm}^3 \operatorname{mol}^{-1} \operatorname{of} (i + j + k) \operatorname{mixture} \right] \left[1000/x_i \operatorname{mol} \mathrm{kg}^{-1} \operatorname{of} i \right]$ (15)

while the m_p (p = j or k) values were obtained from

$$m_p = x_p \left[\frac{1000}{x_i} \cdot (\text{mol kg}^{-1} \text{ of } i) \right]$$
 (16)

The corresponding $V^{E*}(m_p)$ (p = j or k) values (cm³ mol⁻¹; mol kg⁻¹ of i) in the (i + p) binary mixtures were read from $V^{E}(m_p)$ vs. m_p plots, and for this purpose $V^{E}(x_p)$ data (cm³ mol⁻¹) of the (i + p) mixture were first converted to $V^{E}(m_p)$ data by an expression analogous to eqn. (15). Such V_{jk} , V_{ijk} and V_{ikk} data at 298.15 K are recorded in Table 3.

Examination of Table 3 reveals: (1) the V_{jk} interaction coefficients at 298.15 K of pyridine (j) with 1,2-dichloroethane (k), *n*-heptane (k) and aniline (k) in the presence of α -picoline vary in the order 1,2-dichloroethane < n-heptane < aniline; (2) the V_{jk} interaction coefficients at 298.15 K of 1,2-dichloroethane (j) with pyridine (k) and α -picoline (k) in the presence of *n*-heptane vary in the order α -picoline < pyridine; and the V_{jk} interaction coefficients at 298.15 K of 1,2-dichloroethane (j) with pyridine (k) and α -picoline (k) in the presence of *n*-heptane vary in the order α -picoline < pyridine; and the V_{jk} interaction coefficients at 298.15 K of aniline (k) with pyridine (j) in the presence of

ΤA	BL	Æ	3
----	----	---	---

Self and cross-volume interaction coefficients (cm³ mol⁻³; mol kg⁻¹) at 298.15 K

V_{jj}	V _{kk}	V_{jk}	V_{jjk}	V _{jkk}
0.079	0.700	-0.1284	0.0919	0.0190
6.95	4.5	0.8247	-0.0202	-0.6592
6.95	3.31	-0.0955	-0.0635	-0.0498
0.079	-0.07	-0.0002	-0.0073	0.0026
0.079	-6.45	1.8894	2.0458	-3.1540
0.623	- 6.95	-1.4006	0.7771	0.1933
	V _{jj} 0.079 6.95 6.95 0.079 0.079 0.079	V_{jj} V_{kk} 0.079 0.700 6.95 4.5 6.95 3.31 0.079 -0.07 0.079 -6.45 0.623 -6.95	V_{jj} V_{kk} V_{jk} 0.079 0.700 -0.1284 6.95 4.5 0.8247 6.95 3.31 -0.0955 0.079 -0.07 -0.0002 0.079 -6.45 1.8894 0.623 -6.95 -1.4006	V_{jj} V_{kk} V_{jk} V_{jjk} 0.079 0.700 -0.1284 0.0919 6.95 4.5 0.8247 -0.0202 6.95 3.31 -0.0955 -0.0635 0.079 -0.07 -0.0002 -0.0073 0.079 -6.45 1.8894 2.0458 0.623 -6.95 -1.4006 0.7771

 α -picoline (i) or γ -picoline (i) vary in the order α -picoline > γ -picoline.

The V_{jk} data of the pyridine with 1,2-dichloroethane, *n*-heptane and aniline in the presence of α -picoline then suggests that, compared to aniline or *n*-heptane, 1,2-dichloroethane comes closer to pyridine. This is understandable, since NMR studies on 1,2-dichloroethane + α -picoline mixtures have already suggested that 1,2-dichloroethane and α -picoline interact in the following manner

The addition of pyridine to 1,2-dichloroethane in α -picoline would then cause pyridine to approach the electron-deficient end of α -picoline in the above molecular complex with its own electron-deficient end, i.e.

The addition of *n*-heptane to pyridine in α -picoline as a solvent would not allow the components to come closer while the addition of pyridine to aniline in α -picoline may bring about additional rupture of the self association in aniline. The net effect would thus be that V_{jk} for aniline or 1,2-dichloroethane in pyridine in the presence of α -picoline would vary in the order *n*-heptane < aniline. The fact that the V_{jk} data of 1,2-dichloroethane with pyridine or with α -picoline in the presence of *n*-heptane vary in the order α -picoline < pyridine lends further support to the possible interaction of 1,2-dichloroethane with pyridine in the presence of α -picoline.

Again, NMR studies have suggested that aniline interacts with pyridine in

the following manner

The introduction of α -picoline or γ -picoline into aniline + pyridine would then cause minimum disturbance in this scheme of molecular interaction when γ -picoline, rather than α -picoline, is added. The fact that V_{jk} values of aniline with pyridine in the presence of α -picoline or γ -picoline vary in the order γ -picoline < α -picoline further supports this conjecture.

REFERENCES

- 1 P.P. Singh and V.K. Sharma, Can. J. Chem., 61 (1983) 2321.
- 2 R.H. Lacombe and I.C. Sanchez, J. Phys. Chem., 80 (1976) 2352.
- 3 R.H. Lacombe and I.C. Sanchez, J. Phys. Chem., 80 (1976) 2568.
- 4 R.K. Nigam, P.P. Singh, S. Aggarwal and S.P. Sharma, Fluid Phase Equilibria, 18 (1984) 333.
- 4a I. Brown and F. Smith, Aust. J. Chem., 15 (1962) 1.
- 5 P.P. Singh, R.K. Nigam and S.P. Sharma, Thermochim. Acta, 63 (1983) 237.
- 6 P.P. Singh, R.K. Nigam, K.C. Singh and V.K. Sharma, Thermochim. Acta, 46 (1981) 175.
- 7 L.B. Kier, in S.H. Yalbowski, A.A. Sinkula and S.C. Valvani (Eds.), Physical Chemical Properties of Drugs, Dekker, New York, 1980, Chap. 9, pp. 277–318.
- 8 A. Aroavac, I. Gutman and N. Trinajstic, Topological Approach of the Chemistry of Conjugated Molecules, Lecture Notes in Chemistry, Vol. 4, Springer, Berlin, 1977.
- 9 P.P. Singh, Thermochim. Acta, 66 (1983) 37.
- 10 J.E. Densnoyers, G. Peron, L. Avadikian and J.P. Morel, J. Solution Chem., 5 (1976) 63.
- 11 F. Franks and M.D. Pedley, J. Chem. Soc., Faraday Trans. 1, 77 (1981) 1341.
- 12 P.P. Singh and V.K. Sharma, Can. J. Chem., 61 (1983) 2361.