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ABSTRACT

The mechanism of the single-step dehydration of ZnC,0,-2H,0 has been established
from TG, DTA and DSC studies. The rate-controlling process for the reaction is random
nucleation with the formation of one nucleus on each particle. The kinetic parameters are
calculated from mechanistic as well as non-mechanistic kinetic equations. For the dehydra-
tion reaction, the activation energy and the pre-exponential factor show a systematic decrease
with the simultaneous increase in sample mass and heating rate, whereas the mechanism of
the process remains unaffected by these variations.

INTRODUCTION

In earlier publications [1,2], we evaluated the activation energy, E, pre-
exponential factor, 4, and order parameter, n, for the dehydration of
ZnC,0, - 2H,0 from TG, DTA and DSC studies. The effect of the simulta-
neous variation of sample mass and heating rate on these kinetic parameters
was studied and multiparameter equations, which relate the temperature of
inception of reaction, T;, sample mass, m, heating rate, ¢, sample tempera-
ture, T,, at which a constant fraction, a, has decomposed, and activation
energy, E, were derived.

Non-isothermal methods have been widely used to study the kinetics and
mechanism of thermal decomposition of solids [3-8], particularly dehydra-
tion reactions [9-11]. This study, therefore, attempts to establish the mecha-
nism of the dehydration of ZnC,0,-2H,0 from TG, DTA and DSC
experiments. Similar studies by the TG method were carried out by earlier
workers [9] for the thermal decomposition of CaC,0, - H,O.
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EXPERIMENTAL

Zinc oxalate dihydrate of 99.9% purity was used. The experiments were
carried out using a DuPont 990 thermal analyser system in conjunction with
a 951 TGA and cell base module II with 1200°C DTA and 902 DSC.

Six sets of sample mass (4, 6, 8, 10, 12 and 14 mg) and six heating rates (1,
2, 5, 10, 20 and 50°C min~') were employed to study the effect of the
simultaneous variations of sample mass and heating rate on the TG, DTA
and DSC results. Further experimental details are given in our earlier
publications [1,2}. The fractional decomposition, «, was determined directly
from TG curves, whereas a numerical integration technique was used for
DTA and DSC [2]. Calculations were done with a CDC computer using the
FORTRAN 1V program.

MATHEMATICAL ANALYSIS OF DATA

Evaluation of the mechanism of reactions from non-isothermal methods
has been discussed by Sestak and Berggren [12] and Satava [13]. The
procedure is based on the assumption that the non-isothermal reaction
proceeds isothermally in an infinitesimal time interval, so that the rate can
be expressed by an Arrhenius-type equation.

da
d:
where A is the pre-exponential factor, ¢ is the time and f(«) depends on the

mechanism of the process. For a linear heating rate, ¢, d7/d¢f=¢ and
substitution into eqn. (1) gives

= A e E/RTf(q) (1)

da A _psprr
——=—¢ dar 2
f(a) ¢ @
Integration of the left-hand side of eqn. (2) gives
T4 —E/RT
dr 3
/ T 8] 5e (3)

where g(a) is the integrated form of f(a). A series of f(a) forms are proposed
and the mechanism is obtained from that which gives the best representation
of the experimental data. Nine probable reaction mechanisms given by
Satava [13] are given in Table 1. For evaluating kinetic parameters from the
mechanistic equations, the right-hand side of eqn. (3), the temperature
integral, which is an incomplete gamma function, was used in the form given
by Coats and Redfern [14], which is one of the best solutions, recommended
by several authors [15-17].
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TABLE 1

Commonly used g(a) forms for solid-state reactions

Eqn. Form of g(a) Rate-controlling process

No.

1 o? One-dimensional diffusion

2 a+(l1—a)ln(l- a) Two-dimensional diffusion

3 1-1-a)?)? Three-dimensional diffusion,
spherical symmetry, Jander
equation

4 QA-%a)-(1-a)¥? Three-dimensional diffusion,

spherical symmetry, Ginstling—
Brounshtein equation

5 —In(1— a) Random nucleation, one nucleus
on each particle, Mampel equation
6 [~1n(1— a)]'/? Random nucleation, Avrami equation I
7 {—In(1 - a)]'/? Random nucleation, Avrami equation II
8 1-(1- a)'/? Phase boundary reaction, cylindrical
symmetry
9 1-1-a)”? Phase boundary reaction, spherical
symmetry

The general form of the equation used is

gle) AR _E
T2 —ln¢E RT (4)

Along with the mechanistic equations, three non-mechanistic methods sug-
gested by Coats and Redfern [14], MacCallum and Tanner [18] and Horo-
witz and Metzger [19] were also used for comparison. The order parameter,
n, was determined by an iteration method described earlier [1].

Using the computer, linear plots were drawn for the nine forms of
In g(a)/T? versus 1/T by the method of least squares, and also for the
appropriate linear forms of Coats-Redfern, MacCallum-Tanner and
Horowitz—Metzger equations. E, A and the corresponding correlation coef-
ficients, r, for the linear plots were calculated.

In

RESULTS AND DISCUSSION

The values of the temperature of inception of reaction (7,) of the
dehydration reaction are given in Table 2. The kinetic parameters calculated
from TG, DTA and DSC for the nine mechanistic equations are given in
Tables 3, 4 and 5, respectively. The corresponding values of E, A and r
from non-mechanistic equations (Coats—Redfern, MacCallum-Tanner and
Horowitz—Metzger) are given in Tables 6, 7 and 8, respectively.

From Tables 3-5, it can be seen that, irrespective of the thermal methods
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TABLE 2

Variation of temperature of inception of reaction, 7;, with sample mass and heating rate in
TG, DTA and DSC

Sample Heating 7, (K)

mass rate TG DTA DSC
(mg) (°C min )

4 1 360 368 364
6 2 364 372 367
8 5 368 378 N
10 10 373 384 375
12 20 378 391 380
14 50 383 405 387

employed, the highest value of the correlation coefficient and, hence, the
best-fit curve is obtained for the Mampel equation (eqn. 5) in the case of all
six sets of experiments. We can thus infer that the rate-controlling process
for the reaction is random nucleation with the formation of one nucleus on
each particle. It can also be seen from these tables that some other equations
give good linear curves with high values of correlation coefficients, so that it
may become difficult to assign the reaction mechanisms unequivocally from
the linearity of the kinetic curves alone. In such cases, some authors have
chosen the function g(«), which gives kinetic parameters in agreement with
those obtained by the numerical method proposed in ref. 20. In the present
case, it is observed that for all the thermal methods employed, the £ and A4
values obtained from the Coats—Redfern method with » =1 are in good
agreement with the £ and A4 values from the Mampel equation, which is
based on random nucleation.

The MacCallum-Tanner equation also gives E and A4 values which are in
close agreement with those given by mechanistic and Coats—Redfern equa-
tions, whereas the Horowitz—Metzger equation gives higher values. The
higher value is due to the inherent error involved in the approximation
method employed in the derivation of the Horowitz—Metzger equation.
From Tables 6-8, it can also be seen that the values of £ and log 4
(obtained from mechanistic as well as non-mechanistic kinetic equations) are
linearly related, which is due to the kinetic compensation effect [21].

It can be concluded that the mechanism of dehydration of ZnC,0, - 2H,0
follows random nucleation with one nucleus on each particle and is indepen-
dent of the thermal techniques used. The kinetic parameters obtained from
the mechanistic equation show a systematic decrease with the simultaneous
increase in sample mass and heating rate. However, it is seen that the
mechanism of the dehydration reaction is not affected by the variations in
sample mass and heating rate. The kinetic parameters obtained from TG
experiments are lower than those from DTA and DSC values. This is in
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agreement with our earlier observations [22]. In general, the values obtained
from TG are more accurate due to the greater accuracy in the measurement
of the mass. DTA and DSC give closer values since the inherent errors are
comparable in both cases [23].
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