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ABSTRACT 

A comparative analysis of the performance of different deconvolution methods is pre- 
sented. This includes harmonic analysis (HA), inverse filtering (IF), dynamic optimization 

(DO), optimal control (OC) and Z-transform (ZT). The methods are applied on simulated 
thermograms corresponding to time-invariant representative models of heat conduction 
calorimeters. The results suggest that: (1) IF and ZT are the simplest methods and give the 
best reconstructions of the heat power; (2) HA spends more computing time and memory 
space to achieve a similar quality in the thermogenesis; and (3) DO and OC, with the same 
expense in memory and time as HA, give much more inaccurate results when the power 

dissipation lasts a long time. On the other hand, it should be noted that to the present, IF 
and, conceptually, ZT and OC may be generalized to time-varying calorimetry. 

INTRODUCTION 

On one side, the dynamic characteristics from a great deal of different 
heat flux calorimeters have been systematically studied in recent years. After 
this study it follows that the kinetic performance of a certain device (i.e., its 
frequential limitations) may be established directly from its first time con- 
stant and the signal-to-noise ratio present in the measurement. Additionally, 
multi-body models, which qualitatively represent the behaviour of several 
calorimetric devices, have also been designed. 

On the other side, to the present, quite a lot of different deconvolution 
methods in time-invariant calorimetry have been proposed and tested. We 
may mention harmonic analysis [l], dynamic optimization [2], inverse filter- 
ing [3], tracking based on optimal control [4], Z-transform methods [5] and 
the explicit inversion of the heat transport equations defining an RC model 
of the calorimetric system [6]. 
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These deconvolution methods have generally been tested on the Joule 
effect measurements, either comparing the resulting thermogenesis from the 
different algorithms, or comparing directly with the input heat power which 
is well known. 

In this work we make a comparative analysis of the dynamic performance 
of the different methods by using numerical models and the corresponding 
simulated thermograms, and by computing the results obtained in frequency 
space. The analysis is meaningful if the methods tested are to be applied, as 
they usually are, in low-cost personal computers whose typical memory 
space is 64 kb. We also compare the computing time and memory space 
occupation of the different methods. 

MODELS AND METHODS 

First we have simulated two different calorimetric impulse responses 
which correspond roughly to the axial and external dissipations in the 
JLM-E-2 calorimeter [7]. These impulse responses have been shown to cover, 
in a reduced frequency scale (see, for instance, Fig. 1 and ref. S), practically 
the whole frequency range usually attainable in heat flux calorimetry. In 
Laplace space the dynamic behaviour of a calorimeter is given by its transfer 
function, TF, which, in a general form, reads 

dB _ 

Fig. 1. Modulus (dB) vs. frequency (absolute (Hz) and relative scale (~7~)) for the transfer 
functions corresponding to the models M8 and M9. (1) Systems of high thermal conductivity 
materials in calorimetric vessel (model M9 from ref. 7). (2) Systems with lower thermal 
conductivity (model M8). The transfer functions for different calorimeters stand in the dotted 
domain. 
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TABLE 1 

Values of 7; and 7: defining the models M8 and M9 

M8 7; 192 49 18 - 4 2 1.2 0.4 0.3 

M9 7, 192 49 - 9 4 - 1.2 0.4 0.3 
7;* 64 6 

We will call M8 the thermogram with the slowest descent, which corresponds 
to the axial dissipation, and M9 the thermogram of the peripheral dissipa- 
tion. The corresponding values for their poles and zeros are given in Table 1. 
As we will refer to a relative gain scale in dB, we may take the static gain 
S = 1. In practice the static gain of the JLM-E-2 is approximately 0.605EO8 
nV/W. 

As a test for comparison we have numerically performed the convolutions 
of the heat power input in Fig. 2 with the two models, and obtained the 
corresponding simulated thermograms. The heat power input has been 
chosen in accordance with that used in real Joule effect measurements in 
refs. 3 and 7. The thermograms have been sampled at intervals of At = 0.5 s, 
which gives a frequency spectrum wide enough (upper limit is the Nyquist 
frequency 1/(2At)) to make the dynamic gain change by more than 100 dB. 
This is clearly more than what can be expected in a calorimetric system. 

In all the following deconvolutions,’ the proper TF, i.e., the TF of the 
model used to perform the convolution, has been considered. However, every 
method makes explicit use of the transfer function in a different way. In 
some cases the values of poles and zeros of the model are necessary, while in 
others the deconvolution method requires the whole TF in time or frequency 
space. 

The way in which the analysis has been carried out may be summarized as 
follows: for each deconvolution method, the Fast Fourier Transforms of the 
input signal (in Fig. 2) and of the thermogenesis achieved have been 
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u--7~ 
Fig. 2. Simulated heat power input from which the thermograms used in the deconvolutions 
have been calculated. In the present analysis u = 32 s. 
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calculated. The quotient between these two transforms determines the degree 
of performance in obtaining the thermogenesis at each frequency. A perfect 
deconvolution would yield a value of one at all the frequencies for this 
quotient of modulus. 

Different trials have been carried out with each method attempting to 
optimize the results. The influence of the electric noise present in the 
measurement, and of the different modifiable parameters in each method, 
have been particularly analysed. 

Inverse filtering (IF) 

The thermogenesis is obtained by a stepwise elimination of the poles and 
zeros in the TF. Numerically, the filtering is performed by equations of 

Fig. 3. (A), (A’) Results of inverse filtering (IF) for the transfer function M8. (1) Filtering the 
first pole with a time step of 1 s in the derivative. (2) Two poles and a time step of 2 s. (3) 
Three poles and a time step of 4 s. (4) Three poles and a time step of 2 s. (5) Three poles and 
a time step of 1 s. In all the cases above, the signal/noise ratio is 140 dB. (6) Three poles and 
a time step of 1 s, with s/n = 80 dB. (7) Three poles and a time step of 1 s, with s/n = 60 dB. 
(B), (B’) Results of filtering (IF) 4 poles and 2 zeros from M9, with different time steps in the 
numerical derivatives. (1) KAt = 0.5 s; (2) KAt =l s; (3) KAt = 2 s; (4) KAt = 0.5 s and 
signal/noise = 100 dB; (5) KAt = 0.5 s and signal/noise = 80 dB. 
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differences of the form 

s+(l)=s(I)+r, 
s(I+K)-s(l-K) KAts(Z)+r;s+(J-K) 

2KAt 
; s+(z)= 

Kht + 7;” 

to eliminate the poles, -l/7,, and to eliminate the zeros, -l/5*. In these 
expressions the function searched for is s+(I), where I stands for the time of 
the measurement. 

Figure 3 shows the results obtained by IF for both transfer functions. The 
different curves are obtained by changing the step K in the numeric 
derivatives above, and by using different levels of simulated noise on the 
thermogram. The noise is obtained from RANDOM computer routines and 
may be considered a white noise with a flat spectrum. 

Z-transform (ZT) 

The deconvolution based on the Z-transform may be seen as the generali- 
zation of inverse filtering to the case in which the use of digital systems leads 
to a discretization in the thermogram with a sample every At. 

For the calculation to be convergent the transfer function has to be 
completed with a compensating plant leading to the same number of zeros 
and poles. It has been proposed [9] that the additional zeros may be 
calculated from the values of the frequencies where the noise in the TF 
becomes important. Figure 4 shows the results obtained with ZT. 

Harmonic analysis (HA) 

The harmonic analysis is based on the fact that the convolution product is 
an ordinary product in the Fourier space. Fourier transforms of the thermo- 
gram and the impulse response can be easily obtained by means of the Fast 
Fourier Transform. The quality in the results of deconvolution with HA 
mainly depends on two things: the frequential cut-off selected and the way 
in which the associated ripple is smoothed. In the present calculations we 
choose different cut-off frequencies, depending on the level of noise superim- 
posed on the thermogram, in accordance with the criteria established in refs. 
3 and 9. The results are shown in Fig. 5. 

Dynamic optimization (DO) 

The transfer function for performing a dynamic optimization must be in 
the form of an impulse response. A convolution between this response and a 
first approach to the thermogenesis gives a calculated thermogram. It must 
be compared with the experimental thermogram and, by means of a gradient 
search, approximated to it in an iterative way. At the last step, the input 
coupled with the best calculated thermogram is supposed to be the real 
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Fig. 4. (A), (A’) Results of Z-transform (ZT) in the model M8. The filter consists of 3 poles 
and a compensating plant with 3 equal zeros whose values are (1) 1 s, (2) 2 s, (3) 3 s. The 
signal/noise in the three cases is 140 dB. (4) Same compensating plant as (1) with s/n = 80 
dB. (5) Same as (4) with s/n = 60 dB. (6) Same as (3) with s/n = 60 dB. (B), (B’) Results of 
Z-transform (ZT) in the model M9. The filter consists of 4 poles and 2 zeros and the 
compensating plant has two equal zeros with values (1) 0.25, (2) 0.5 and (3) 1.0. The 
signal/noise = 140 dB. (4) Same as (1) with s/n = 100 dB. (5) Same as (1) with s/n = 80 dB. 
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Fig. 5. (A) Harmonic analysis (HA) in the model M8. (1) s/n = 140 dB, vC = 0.182 Hz; (2) 
s/n = 140 dB, V, = 0.063 Hz; (3) s/n = 80 dB, v, = 0.063 Hz; (4) s/n = 80 dB, vC = 0.182 Hz; 
(5) s/n = 60 dB, V, = 0.063 Hz. (B) Harmonic analysis (HA) in the model M9. (1) s/n = 140 
dB, vC = 0.667 Hz; (2) s/n = 80 dB, v, = 0.222 Hz; (3) s/n =140 dB, vC = 0.222 Hz; (4) 
s/n = 80 dB. vC = 0.667 Hz; (5) s/n = 60 dB, v, = 0.222 Hz. 
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Fig. 6. (A) Optimal control (OC) with the model M8. Signal/noise = 140 dB. (1) R = 10 E-OS; 
(2) R = 6 E-05; (3) R = 2 E-05. (B) Optimal Control (OC) with the model M9. Signal/noise 

=140 dB. (1) R =lSE-05; (2) R =lOE-05; (3) R = 5E-05. 

thermogenesis. Both the computing time per iteration and the number of 
iterations rise when a great deal of samples from the thermogram have to be 
considered. This is the case when the input power in the experiment lasts a 
long time. 

Figure 6 presents the change in the results depending on the number of 
iterations and the time extent of the thermogenesis. 

Optimal control (OC) 

In this method the deconvolution problem is rewritten in terms of a 
tracking problem between the experimental thermogram and a calculated 
one. The problem is solved in the sense of an optimal control. The main 
differences with DO are the use of state equations to describe the transfer 
function of the system, and the non-iterative way in which the optimal 
control leads to the optimization. The free parameter is now the weight in 
the performance criterion. The results again strongly depend on the extent of 
the thermogenesis, and the number of points to be taken into account from 
the thermogram is limited to the memory occupation of the computer. 
Figure 7 shows the results obtained with the Optimal Control. 

Deconvolution based on the explicit inversion of the heat transport 
equations in RC models has not been considered. Generally speaking it is 
difficult to obtain an accurate model of a calorimeter, due to the great 
number of parameters to be evaluated. On the other hand, the model has to 
be reduced to very few elements in order to perform the deconvolution. 
Otherwise the effect of numerical derivatives on the thermogram increases 
the noise extraordinarily. 
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Fig. 7. (A) Dynamic optimization (DO) of M8. Signal/noise =140 dB. The number of 
iterations is (1) 60, (2) 45, (3) 30 and (4) 15. (B) Dynamic optimization (DO) of M9. 
Signal/noise = 140 dB. The number of iterations is (1) 45, (2) 30 and (3) 15. 

GENERAL RESULTS 

Table 2 shows the memory occupation and computing time for the most 
significant deconvolutions obtained. To compare their dynamic perfor- 
mances, Fig. 8 presents, in frequency space, the best result for each method 
together with those obtained by the other methods using equivalent condi- 
tions in the calculations. 

After the results, and considering that in calorimetric measurements the 
signal/noise ratio is usually over 50 dB, it seems to be correct to consider IF 
and ZT as practically equivalent for the purpose of deconvolution. They use 
only elementary numerical tools and also appear to be the more efficient in 
time. 

Comparatively, the satisfactory results obtained with HA are mainly due 
to the fact that the whole transfer function is used. This is also the case with 
DO. On the contrary, OC, IF and ZT use a limited representation of the TF 
in terms of some poles and zeros. It is also necessary to stress on the point 
that IF has been presently generalized to deal with time-varying systems [lo]. 
This generalization is also conceptually feasible for ZT and OC [ll]. 

TABLE 2 

Memory occupation and computing time for the most significant deconvolutions obtained 

Deconvolution No. of points Computing 
method handled time (s) a 

HA 4096 35 
IF 4000 14 

ZT 4000 14 
oc 1000 27 
ODb 1000 1560 

Memory (kb) 

- 60 
$10 
210 
- 60 
- 60 

a In DATA GENERAL Eclipse C-350. 
b 30 iterations. 
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Fig. 8. (A) Comparison of the best results obtained with the different methods for the model 
M8. (1) IF, (2) ZT, (3) HA, (4) OD, (5) OC. (B) Comparison between the best results obtained 

for the model M9. (1) IF, (2) ZT, (3) HA, (4) DO, (5) OC. 

CONCLUSIONS 

(1) IF and ZT appear, after a comparative analysis, as the more efficient 
in time, more accurate methods of deconvolution in calorimetry. 

(2) AH, DO and OC, because they use the whole transfer function, 
demand a high occupation in memory and a computing time which increases 
quickly with the number of points considered in the thermogram. The 
problem may be minimized by sampling with a larger At, but this of course 
means losing kinetic information in the thermogenesis. 

(3) IF may nowadays be applied to the thermograms obtained from 
slightly time-varying calorimetric systems (i.e., in liquid mixtures by continu- 
ous injection). ZT and OC should not, conceptually, have any problem in 
being generalized to time-varying systems, though it has not been brought to 
practice yet. 

REMARK 

All times are in seconds. The transfer to relative scale (time [ t/T11 or 
frequency [ml]) is easily made ( 71 = 192 s). 
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