THERMAL ANALYSIS OF M(LH2)2X2 COMPLEXES WITH PLANAR DITHIO OXAMIDES M = Pt, Pd, Ni; X = Cl, Br, I.

H. HOFMAINS, H.O. DESSEYN

Rijksuniversitair Centrum Antwerpen (**RUCA), Inorganic Chemistry dept., Groenenborgerlaan, 171, 6 2020 Antwerpen (Belgium).**

ABSTRACT

In **this study we compared the thermal decompositions and the presence of** stable intermediates for M(LH₂)₂X₂ complexes with LH₂ is a planar dithio**oxamide and X = Cl, Br, I. The difference in thermal decomposition can be explained with the H.S.A.B. theory.**

EXPERIMENTAL

Planar[']dithio oxamides such as H₂NCSCSNH₂ (DTO), CH₃HNCSCSNH₂ (MDTO) and CH₃HNCSCSNHCH₃ (DMDTO) generally give M(LH₂)₂X₂ complexes in acid media when a ligand solution in acetic acid is added dropwise to a M²⁺ solution in HX. The LH₂ : M ratio must be 2 : 1 (ref. 1,2). M(DTO)₂I₂ could **not be formed. The precipitates are separated and washed with acetic acid to remove unreacted products and the access of X- counterions. The structure** consists of M(LH₂)₂²⁺ dications and X⁻ anions interacting through hydrogen **bonds. For some M(LH2)212 compounds, the molecular formula contains 2** HI **in addition. The ligands coordinate through sulfur (ref. 3.) (fig. 1.).**

and other mesomeric forms

Fig. 1. The structure of M(LH₂)₂X₂

The thermal measurements are recorded with a Du Pont R90 thermal analyser equipped with a 951 TGA balance in a N₂ gas flow (50 ml/min). Sample sizes of **7.5 - 15. mg and heating rates of l"C, 5"C, 10°C and 20"C/min are used as the**

0040-6031/85/\$03.30 0 1985 Elsevier Science Publishers B.V.

heating rate may determinewhetheror not successive reactions can be separated (ref. 4).

RESULTS

The M(LH₂)₂X₂ complexes do not decompose by a simple deprotonation of the LH₂ ligands by the X⁻ anions to form M(LH)₂ and 2HX. However, this could be expected as this deprotonation was already observed for the Pd(LH₂)₂X₂ complexes at room temperature. When Pd(LH₂)₂X₂ was pressed in a NaF matrix we obtained, due to the strong electronegativity of fluorine, Pd(LH)₂, NaHF₂ and **NaX. (ref. 5) according to the reactions** :

$$
M(LH_2)_{2}X_{2} + 2NAF
$$

\n
$$
M(LH_2)_{2}F_{2}I + 2NAX
$$

\n
$$
M(LH_2)_{2}F_{2}I + 2NAX
$$

\n
$$
M(LH_2)_{2} + 2HF
$$

\n
$$
M(LH_2)_{2}F_{2}I + 2NAF
$$

\n
$$
M(LH_2)_{2}F_{2}I + 2MAX
$$

The first step is a halide exchange in approximately hundred fold excess of **NaF.** The Pd(LH₂)₂F₂ compound was not stable due to the exceptionally strong N⁺- H....F⁻ associations, resulting in the formation of Pd(LH)₂ and in the elimination of HF. The HF is then captured by NaF forming NaHF $_2$. **The decomposition is much more complicated and depends strongly on the nature** of the metal M^{2+} and on the counterion X^- . We can divide the 24 coordination **compounds into 3 main categories according to the 3 metals** : **Pt, Pd and Ni.**

No stable intermediates are obtained for the Pt(LH₂)₂X₂ complexes. All decompose to Pt in a curve with inflections but without a plateau. Decomposition begins little above room temperature but the maximum weight loss occurs between 250°C and 300°C, e.g. Pt(MDT0)₂Br₂ (fig. 2).

The $Pd(LH_2)_{2}X_{2}$ curves indicate in some cases a stable intermediate. **Pd(LH2)212.2HI looses the DMDTO ligand and 2HI between 120°C and 190°C and** forms $Pd(DMDTO)$ ₁^I₂ (th -44.3%, exp -42.5%). The reaction is confirmed by the **infrared spectrum of the 1:l compound. This intermediate product is stable in** the 190°C - 250°C region. Pd(DMDTO)₂Cl₂ decomposes between 120°C and 240°C to form an intermediate that starts decomposing immediately. Pd(MDTO)₂Cl₂ gives a **curve inflection at 240°C without a distinct plateau. Until now we cannot assign a stoichiometric compound to the curve inflections of both compounds,** but the infrared spectra of both intermediates reveal that undissociated LH₂ **is still present.**

The Ni(LH₂)₂X₂ complexes form in all cases intermediates during the decomposition. The most occurring intermediate is the (NiL)_m polymer. This polymer is formed for Ni(DTO)₂Br₂, Ni(MDTO)₂Cl₂, Ni(MDTO)₂Br₂, Ni(MDTO)₂I₂.2HI and **G(DMDTO),I,.2HI.,The heating rate has no influence on the chain length of the polymer. The experimental .and calculated weight loss for infinite chain length** **are compared in table 1. The difference between the experiment and the calculated value must be due to short polymer chains because the infrared and'far**infrared spectra of the (NiL)_m compounds are, with exception of the [Ni(DMDTO)]_m polymer, the same as the spectra obtained for the [NiL]_m polymers prepared in **alkaline media. These compounds also exist with short chains of about 5 units.** The different spectrum obtained for the [Ni(DMDTO)]_m polymer prepared by ther**mal methods in comparison with the compound prepared in alkaline solution is** due to an additional coordination of H₂0 in the latter compound (ref. 2).

TABLE 1

Weight loss for the thermal preparation of (NiL) $_m$ from Ni(LH₂)₂X₂.

The TG curves in which the same (Ni(MDTO))_m polymer is formed for the 3 Ni-**MDT0 complexes are presented in fig. 3. Instead of weightpercentage versus temperature the average molecular weight versus temperature is shown. This** implies that the plateaus of the 3 curves coincide. The 3 remaining Ni(LH₂)₂X₂ compounds, Ni(DTO)₂C1₂, Ni(DMDTO)₂C1₂ and Ni(DMDTO)₂Br₂ show a decomposition **curve with a distinct plateau, but further analysis must reveal the molecular formula of these intermediates.**

DISCUSSION

The absence of stable intermediates for $Pt(LH_2)_2X_2$ and the presence of few intermediates for Pd(LH₂)₂X₂ and much more for $\overline{Ni(LH_2})_2X_2$ can be explained by **the theory of Hard and Soft Acids and Bases (H.S.A.B.) (ref. 6). This theory** implies that a strong bonding is formed between the "soft" Pt²⁺ metal and the **"soft" sulfur part of the ligand through which the coordination occurs. This strong bond between Pt and S is the reason why the first weight loss is due to the decomposition of the ligand and not to the separation of a complete ligand** unit. Therefore no stable Pt-LH₂ combination is obtained during the decomposition. Pd²⁺ is less "soft". Therefore the bond between Pd and LH₂ is less stable and stable Pd-LH₂ combinations are obtained during some of the thermal decompo**sitions. Ni is a borderline metal according to the H.S.A.B.theory. This implies** that the Ni-sulfur bond is not very stable and the Ni(LH₂)₂X₂ complexes tend

I

to decompose by breaking the weakest link, between Ni and the ligand and stable Ni-ligand combinations, as the (NiL)_m polymers are formed for which the **release of one ligand is combined with the deprotonation of the remaining coordinated ligand.**

Fig. 2. Thermal decomposition curves of M(MDTO)₂Br₂ $M = Ni$ (-------), Pd (-----), Pt (-----) (heating rate 5° C/min).

Fig. 3. Thermal decomposition curves of Ni(MDTO)₂X₂ $X = C1$ (-------), Br (-----), I (-----) (heating rate 1° C/min).

ACKNOWLEDGEMENTS

The authors wish to thank J. Janssens and G. Thijs for technical assistance.

REFERENCES

- **1 G. Peyronel, G.C. Pellacani., A. Pignedoli, Inorg. Chim. Acta 5(1971), 627**
- **2. H. Hofmans, H.O. Desseyn, M.A. Herman, Spectrochim. Acta 12(1982), 1307**
- **3 G. Peyronel et al., private communication.**
- **4 W. Wendlandt, Thermal Methods of Analysis, 2nd ed., J. Wiley & Sons (1974).**
- **5 H. Hofmans, H.O. Desseyn, J. Shamir, R. Dommisse, Inorg. Chim. Acta 54(1981), 227**
- **6 R.G. Pearson, Hard and Soft Acids, Dowden, Hutchinson, Ross, USA (1973)**