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ABSTRACT 

The intrinsic inertia of a DSC unit causes a more or less pronounced deviat- 
ion of the recorded signal curve Au(t) from the time behaviour of the pertinent 
variable heat flow q(t). In a former treatise (ref.4), the term 'signal potent- 
ial 0' was introduced to characterize the product of q and the caloric sensitiv- 
ity E. An equation was elaborated linking@ with AU and thus permitting the 
transformation of the signal curve into o(t) as the true reflection of q(t). 
The present paper is aimed at explaining the determination of the equipment- 
specific parameters of this equation. The parameters are described as functions 
of temperature. 

INTRODUCTION 

Owing to the relationship existing between the equipment used for the quanti- 

tative DTA. on the one hand, and the heat conduction calorimeters, on the other 

hand, which can be used not only for the measurement of thermal quantities Q 

but, on principle, also for that of heat flows q, a DTA-instrument ought to be 

suitable not only for the determination of the reaction enthalpies AHr but also 

for kinetic measurements on reactive systems, where the heat flow out of or into 

the sample inspected is at any time strictly proportional to the reaction rate 

r = dx/dt (ref.1). Ideally, AU is proportional to q. When the heat flow is 

strongly variable, the intrinsic inertia of the instrument interferes, however, 

with the simple interrelationship between the DTA-signal and the heat flow (e.g 

ref.3). That is why the signal curve Au(t) must deviate the more strongly from 

the reaction rate curve r(t) searched for, the more quickly the reaction takes 

its course. 

In order to be able to directly compare with each other the configurations 

of the curves AU(t) and r(t), the ordinates of r(t) must be multiplied by the 

factor -E AH,. The product is called signal potential 0 and features the same 

dimension as AU: 

0 = -rEAHr (1) 

The transformation of the signal curve which, during the course of the thermo- 

analytical investigation is recorded as a peak curve, into the curve of the sig- 

nal potential, avoids the kinetic misinterpretation of the measurement, as only 
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the o-curve is the true reflection of the reaction rate curve. The equation 

which links AU with 0 and which has been proposed in a former paper (ref.4). is 

particularly suitable for the carrying-out of this transformation. Apart from 

these 2 magnitudes, the equation comprises no more than 2 additional equipment- 

specific parameters. In the aforementioned paper, a method permitting the estim- 

ation of the parameters had been proposed also for those instruments which com- 

prise a heating element for the generation of a defined rectangular heat impul- 

se. Now, a mathematically more precise method will be shown consenting a more 

generalized application. 

In the case of very slow reactions there is, however, such a high degree of 

coincidence between the o-curve and the peak curve that the transformation can 

be dispensed with. To decide this, the paper proposes a criterion permitting 

the estimation of the deviation between the two curves. 

THEORY 

Principles 

For the heat conduction calorimeter, CALVET & PRAT established for the signal 

a differential equation of the second order which linked the said signal with 

the heat flow. According to HEMMINGER & HOEHNE (ref.3), this equation was to be 

applicable also for the DTA. This was proven by the fact that, proceeding from 

the formulation found by BORCHARDT & DANIELS, the differential equation was der- 

ived in a new way and specifically for the DTA (ref.5). By using the term 'sig- 

nal potential Q', it adopted a particularly simple form: 

0 = AUr + (T, + T2)dAU/dt t TlT2d2AU/dt2 (2) 

N is the total value of the signal at the time taken into consideration. AUr 

is the portion relating to the reaction and presenting itself as the distance 

from the base line AUc: AUr = AU - AUc (3) 

The parameters '1 and ~~ are the so-called time constants of the instrument, 

which are to be determined. 

The Determination of the Time Constants 

In the theoretical case of the infinitesimal heat impulse transmitting a 

finite amount of heat Q. the signal potential 0 is infinitely large only at the 

time to. 0 = 0 for t > 0. Then the solution of eq.2 is: 

AUr = (e 
-t/.r2 -t/r, 

-e )QE/(r2 - ~1) (4) 

The peak curve as set out in eq.4 has only one turning point, viz. at ti (be- 

hind the apex at tp). tp and ti are determined by a single and a double differ- 

entiation and zeroizing of the relative derivations. This results in: 

tp = r,T21n(r2/rl)/(r2 - T1) (5) 
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and ti = 2t 

The realization of ai infinitesimal heat impulse is impossible. 

(6) 

The real im- 

pulse is always of a finite length of time, causing the initial section of the 

recorded peak AUr to take a course which deviates from the ideal peak pursuant 

to eq.4. Only at the termination of the impulse, the real peak curve will adopt 

smoothly that configuration which almost completely corresponds to the ideal one. 

This is achieved shortly in front of the apex. 

In contrast with the ideal case, the peak curve relating to the real impulse 

shows 2 turning points at the times til and ti2. til < t < t. 
P 

,2. Since, subse- 

quent to the end of the impulse, 0 = 0, in the real case the difference At. = 
'P 

ti2 
- tp will adopt that value which, because of eq.6, is valid in the ideal 

case for tp pursuant to eq.5. 

The time constant ~~ is obtained by laying off AUr against the time t act. to: 

lnAU,= -(l/-r2)t + lnv for t > ti2 (7) 

The ratio y = T~/T, of the two time constants is obtained by a graphical or num- 

erical evaluation of the equation 

(lnY)/(Y - 1) = At,,/T, (8) 

In the case of DTA-instruments which like the model NETZSCH DSC 444 comprise a 

heating element fixed to the sample cell, the heat impulse experiment aimed at 

determining T, and ~~ at the selected temperature T, is carried out with a rect- 

angular pulse transmitting a defined amount of heat. With other instruments, 

an indefinite amount of heat is, e.g. transmitted by briefly touching the sample 

cell with a heated metal bar or by means of a focussed light flash. Due to eq.4, 

the amount of heat Q only influences v in eq.7. The time constants TV and T2 

thus determined by means of a thermal pulse experiment are complicated functions 

of the temperature T. It has been found that a simplified presentation is arriv- 

ed at by putting 

T., t T2 = 'I (9) 

T1T2 
= T2/(2 t y t l/y) = T2/< (10) 

A critical analysis of all calibration problems connected with the DSC showed 

that all dependences on temperature can be expressed in terms of simple funct- 

ions of a single temperature function, viz. n(T) (ref.5). The determination of 

n(T) is a byproduct of the calibration operations aimed at the assessment of the 

caloric sensitivity E within the working range of the instrument. E itself is 

a function of T; see e.g. ref.2. When E. is the sensitivity at a conveniently 

selected temperature To, then we have: 

n(T) = EO/E (11) 

Regarding the dependence of T and y on T. it has been found (ref.5): 

T = 2r0/11 + n(T)1 (12) 

y = 2yo(To t 273) 2'3/[{1 t n(T)l(T t 273)2'3] for y> 2 (13) 
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l-lere, T 0 and YO have been referred to the same temperature T 
0 

as E o. The values 

Eo, ~~~ Y. and the function n(T) characterize the DTA-instrument used. In con- 

junction with eq.9 and eq.10, eq.2 achieves a configuration especially suitable 

for practice: 

0 = AUr + rdAU/dt + (&)d2AU/dt2 (14) 

CONCLUSION 

The theory laid down in abbreviated form, furnishes a criterion which allows 

to decide wether the transformation of the AUr- into the@-curve is necessary 

or not. There is no doubt as to the coincidence between the two curves, whenever 

the ratio @(t)/AUr(t) for all t in the reaction interval is found to be very 

close to 1. In a case like this, the transformation could be dispensed with, 

whereas otherwise it would have to be carried out. In practice it is sufficient 

to evaluate the deviation of 0 from fXJr at the forward turning point: 

@(til)/AUr(til) - 1 = ‘hiI (15) 

As soon as this deviation exceeds half of the equipment-specific average error, 

then the transformation is an absolute must in order to avoid additional errors. 

The transformation can be performed 'by hand' or by means of a computer (ref.4). 

Only in the case of an ideal base line, the area under the O-curve is equal 

to the area under the original peak. Because of eq.1 the o-area is always pro- 

portional AH,. Therefore the integration of eq.14 between the peak onset (t = 0) 

and its termination (t = t,) yields an equation which is helpful for the exact 

computation of the reaction enthalpy out of the peak area in case of a non-ideal 

base line. 

For the purpose of the exact kinetic interpretation of the a-curve, it is im- 

portant to know the sample temperature TS at any time t within the reaction in- 

terval. If the steepness o= dU(T)/dT of the thermocouple arrangement is known 

and when measuring the reference temperature TR, then TS can be computed by: 

TS(t) = TR(t) + {AU(t) + [T/(Y + l)]dAU(t)/dtl/o (16) 
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