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ABSTRACT 

Evidence is given that dense systems of finite semiflexible polymer chains 
confined to a lattice do not exhibit at any temperature a long-ranged orienta- 
tionally ordered state where all chains are parallel oriented. No phase transi- 
tion is observed. This is shown by simulating various systems at concentrations 
>0.95 on the square and cubic lattice with chain lengths of 10 and 20. The over- 
all orientational orderparameter is less than 0.1 for all temperatures, whereas 
the configurational orderparameter characterizing the flexibility of the chains 
exhibit a continuous transition corresponding to a transition of each individual 
chain between its random configuration and a rodlike configuration at low tempe- 
ratures. Locally there exist orientationally ordered regions having a correlation 
length of the order of the chain length. From our results we generally suggest 
that for finite chain lengths, the ground state of a dense system of semiflexible 
lattice chains is highly degenerated with nonvanishing entropy. Some evidence is 
given that this degeneracy is removed and accompanied by a genuine phase transi- 
tion between a disordered and a long-ranged orientationally ordered state if 
intermolecular interactions are included. 

INTRODUCTION 

A long-standing problem in polymer theory is the statistical thermodynamics 

of semiflexible chain molecules at high concentrations. Assuming adequacy of the 

lattice model /l-3/ to polymer chains, it has been proposed long time ago by 

Flory /4/ that a stable state of orientational order, where all polymer chains 

are parallel oriented to each other, can be achieved solely by intramolecular 

and steric interactions: the first one responsible for the decrease of chain fle- 

xibility, whereas the second one consequently forcing then the stiff chains to a 

parallel ordered arrangement. This concept emerged essentially from the "mean - 

field" lattice result that the number of configurations of long chains possessing 

a very low degree of flexibility at low temperatures is very small, which has 

been interpreted as the appearance of an orientationally ordered low-temperature 

phase preceeded by a first-order phase transition /4,5/. 

The validity of this theory has been questioned in a number of recent publi- 

,cations /b-B/. 

The aim of the present work is to elucidate the ordering phenomena of dense 

systems of finite semiflexible lattice chains using Monte Carlo methods. Preli- 

minary results have been published recently /9/. 
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MODEL AND SIMULATION TECHNIQUE 

The chain consists of N-l flexible jointed segments (of the same length as the 

lattice constant) on the square or cubic lattice. The intramolecular (configura- 

tional) energy between two successive segments is ~0 if they are colinear (trans 

bond) and zero otherwise (gauche bond). The steric interactions are taken into 

account as usual: double occupancy of any lattice site is excluded. 

In order to simulate an infinite system of finite chains at a given concentra- 

tion c, it is convenient to approximate the infinite system by infinitely many 

identical cells of linear dimension L (in units of the lattice constant) and im- 

posing periodic boundary conditions between neighboring cells. The concentration 

c is then simply given by the number of sites occupied by the chains per number 

of sites in one cell, which is c=NNp/L3 for the cubic and c=NNp/L2 for the square 

lattice; Np is the number of chains per cell. Four different systems of polymer 

chains have been simulated and will be discussed in the present work: on the 

square lattice (1) N=lO, Np=1476, L=123, (2) N=20, Np=756, L=126, and on the cubic 

lattice (1) N=lO, Np=2883, L=31, (2) N=20, Np=3528, L=42. 

In a recent calculation /lo/ we used L=N on the square lattice which is sup- 

posed to approximately simulating an infinite system of infinite chains. Although 

the chains were finite, the steric interaction and the condition LEN force the 

system to a uniquely defined ground state where all chains are fully extended and 

parallel oriented to each other. It reflects the impossibility to achieve a dis- 

ordered (and dense) arrangement of rods of length N in a cell of linear dimension 

LEN. The same situation is obviously encountered in the attempt to fill a lattice 

with infinitely long rods where L=~+J. Indeed, simulations /lO,ll/ for the case 

L=N and analytical work /12/ for N -xa suggest a first order phase transition from 

the disordered to the long-ranged orientationally ordered state, manifested in 

the discontinuous change of the orientational orderparameter s from s=O to s>O.8 

at the critical temperature, where s is defined for square and cubic lattice res- 

pectively as 

s = 2<fy>-1 

s = (3<fy>-1)/2 

where fy denotes the fraction of lattice steps along the axis of preferred orien- 

tation, and the brackets <...> denotes the ensemble averaging. 

In the present work we are interested in the "packing problem" for finite 

chains, i.e. LBN, where we expect a qualitativ different behavior as compared 

to infinite chains. Of course, the condition LBN cannot strictly be achieved 

due to the limited computational facilities. However, a recent investigation /I3/ 

of semiflexible trimers (N=3) on the square lattice demonstrated that for LBN 
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and intramolecular interactions only, the ground state is highly degenerated and 

s=O for al.1 temperatures; whereas for L=4 and Np=4 we obviously must have s=l at 

temperature T=O, thus demonstrating the importance of distinguishing between the 

cases L=N and LBN. 

Technically different ensembles of chain configurations are generated by a mo- 

dified reptation technique /13/. Starting from an arbitrary configuration, one 

first selects at random one of the voids (i.e. unoccupied lattice sites). If one 

of the randomly selected nearest neighbor sites of this void is occupied by an 

end point of a chain, the other end point of the chain is moved to the void, 

thereby displacing the void to the former end point of the chain. The new state 

is accepted as a new one if the transition probability distribution W exceeds a 

random number O<n<l, otherwise it is rejected and the old configuration is coun- 

ted once more in the averaging. The transition probability is constructed so 

that it satisfies detailed balance with the equilibrium distribution P.=exp(-E/g), 

where E is the total energy of the system: if AE=E~~~-E,~~>O, W=l; if AE<O, then 

W=exp(AE/kDT). This is the well known Metropolis sampling technique /14/. 

The systems thus generated are characterized by ensembles averages of orienta- 

tional orderparameter s(1) and intramolecular energy E (which is identical to the 

configurational orderparameter) given by the average fraction of trans-bonds re- 

lated to the fraction of gauche-bonds g as 

E =1-g 

It should be noted that the reptation technique is not capable of reaching 

locked-in configurations, where neither of the chain ends can move at all. How- 

ever, the number of such configurations is supposed to be very small as compa- 

red to the total number of configurations, and hence the error due to this limi- 

tation should be negligible. 

Another shortcoming of the reptation technique applied to dense polymer lat- 

tice models is the unsuitability to equilibrate systems of rodlike chains 

(E>0.96), which are expected to appear at low temperatures. There the relaxation 

times become very long and different equilibrium states are therefore hardly ac- 

cessible during time-limited simulations. 

RESULTS AND DISCUSSIONS 

Orientational Orderparameter 

One of our main results is that the orientational orderparameter remains very 

small (s<D.l) for all temperatures and for all of the models which have been in- 

vestigated; whereas the configurational orderparameter E undergoes a continuous 

transition E-+1 with decreasing temperature (discussed below). The comparably h@h 

value of s is due to well known "finite size effects" which should vanish (s-+0) 
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in the thermodynamic limit N/L+0 (N finite). 

Fig.1. Snapshot picture of the square lattice system N=lO at kBT/E=0.5. The ori- 
entational and configurational orderparameter are s=-0.00015 and E=0.948 respec- 
tively. 

Figure 1 represents a snapshot of a configuration on the square lattice for 

N=lO at kBT/e=0.5, with the actual values s=-0.00015 and E=0.9476: almost all 

of the chains are fully strechted, but the degree of or%ntational disorder is 

very high. Only locally one observes ordered regions of linear size C-N, indeed 

reflecting the impossibility in achieving disordered arrangement of rodlike 

chains for regions of linear size ~5. Snapshot from cubic lattice models exhibit 

short-range order as well. 

In contrast, orientationally ordered regions of size ~5 are thermodynamically 

not stable, but decay to smaller regions of size 5 within some typical relaxa- 

tiontime. This is demonstrated in Fig.2, where the relaxation of s and E start- 

ing from the completely ordered state (s(O)=l, E(O)=l) to the equilibrium state 

at kBT/e=0.6 is shown: the conformation of the chains remain essentially rodlike 

(E=0.9), whereas the long-ranged orientational order decays to a short-ranged 

order with ~0.1, similar as in Fig.1. (Of course, here the relaxation reflects 

the artificial dynamics introduced by the reptation techniques; more realistic 

model dynamics would require a different technique /15/, in which we are not 



379 

1.0 , , , ( , , , , , , , , , , , 

_ . . . . . . . . . . . . . . . . . . . . . . .-•* l *-•*- 

‘0 E(t) 
. .*.. 

. 
l *** 

. 
. 

0.5 - l *. 

l e s(t) 
l *'. 

.*..*=... 
l :*. 

."S**, 
e.+*.**...,._ 

0.0 ” ” ” ” ” ’ ” I I 

0 2 4 6 6 10 12 14 16 

t/lo4 

Fig. 2. Time-dependence of the orientational and the configurational orderpara- 
meters s(t) and E(t) respectively versus time t at kBT/c=0.6 for N=lO on the 
square lattice. The initial configuration at t=O was completely oriented, s(O)=1 
and E(o)=l. The time is defined as usual: 
unit. 

NPN Monte Carlo trials are one time 

interested in the present study). 

Configurational Orderparameter 

Figure 3 shows the Monte Carlo estimates of the configurational energy E as a 

function of temperature for square lattice models (upper part) and cubic lattice 

models (lower part). One observes a continuous transition corresponding to a 

transition of each individual chain between its random configurations at high 

temperatures and rodlike configurations at low temperatures. The transition 

curve is qualitatively described by the transition of a single "unperturbed" 

chain /4/, where steric interactions are neglected except for nearest neighbors 

along the chain (non-selfreversal chain), 

EO=l-I l+(q-2)-1exp(l/?)}-1 

q is the lattice coordination number and?=kBT/c is the reduced temperature. 

(Eq.(3) has been reproduced by Monte Carlo within less than 1% difference). A 

slightly better approximation to the Monte Carlo data is given by the following 

implicit equation: 
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Fig. 3. Configurational orderparameter E versus temperature for square lattice 
models (upper part) and cubic lattice models (lower part). 

El-l- { l+(q-2)-Iexp[(l+(q-2)-1El)/?]}-1 (4) 

It should be noted that even for T -ta, there is some difference between (4) (or 

equivalently (3)) and the Monte Carlo estimates: for the square lattice the Monte 

Carlo result is E(m)=0.37f0.01, whereas Eo(m)=El(m)=1/3; for the cubic lattice 

E(-)=0.26+0.01, Eo(m)=E,(-)=0.25. The discrepancy between E(m) and El(a) is not 

due to a "packing effect", but due to short-ranged steric interactions along 

the chain; the same value for E(-) has been obtained also from simulations of 

single self-avoiding chains on the two lattices. This explains the difference 

between EOand El at higher temperatures as observed for the square lattice 

(Fig.3). 

Real "packing effects" are observed at lower temperatures (kRT/e<l for the 

square lattice and kBT/c<0.7 for the cubic lattice), where the deviations from 

El become more pronounced the lower the temperature and the longer the chains. 

Indeed one is attempted to suggest that with increasing chain length the slope 

of E should increase correspondingly until dE/dT * with N* (but still L>N) at 

come characteristic temperature Tc, indicating a genuine phase transition invol- 
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ving a latent heat and accompanied by a transition from the disordered to the 

complete orientationally ordered state (i.e. F_ leading to s-tl). 

From these considerations one is inclined to predict a continuous phase tran- 

sition, but analytically a discontinuous phase transition in the limit N+= (L*N) 

might still be possible. Anyway, for long but finite chains the specific heat 

C=dE/dT is expected to exhibit a sharp maximum near T, likely to a second order 

phase transition. Indeed there is some evidence that this quasi-critical behavi- 

or for finite chains can be converted to a genuine critical one by simply taking 

into account van der Waals (intermolecular) interactions /12/ of arbitrarily 

strength E~<O. So far local orientation-dependent interactions'between adjacent 

chain segments have been considered of minor importance /4/ to the orientational 

order of semiflexible polymers. These arguments /4/ supported by experimental 

facts are certainly true in a quantitative sense (E~/EQ:~), but qualitatively in- 

termolecular interactions can indeed be very important. This has been observed 

in recent calculations for the trimer model (N=3) on the square lattice /12/, 

where the lack of a phase transition and a highly degenerated ground state (~0) 

for E~=O are replaced by a continuous phase transition and an associated comple 

oriented ground state if EJE>O. Of course, the trimer is too short in order to 

give a conclusive answer on the nature of the transition of long semiflexible 

chain molecules in the presence of intermolecular interactions. This is current- 

ly being investigated. 

But still there is another explanation for the increase of E with increasing 

N at lower temperature, but which we think is of secondary importance: in the 

thermodynamic limit N/L+0 (N finite) one expects E to be slightly lower than the 

corresponding Monte Carlo estimates for ratios N/L>0 ("finite size effects"). 

Actually in the case of the square lattice we have for N=lO N/L=0.08, whereas 

for N=20 only N/L=0.16, which could explain the higher values for N=20 as com- 

pared to N=lO (Fig.3). But one test run for N=20 at kBT/e=0.6 with N/L=0.08 did 

not decrease the corresponding value of E for N/L=0.16 significantly. 

SUMMARY AND CONCLUSIONS 

In the following the essential results and implications of the present work 

are summarized. 

(1) Flory's ("packing") principle /4,5/ of the impossibility in achieving a dis- 

ordered and dense arrangement of rigid rods on a lattice is true, but the cor- 

responding correlation length 5 characterizing the range of parallel order is 

finite and comparable to the chain length, C-N. 

(2) This explainsthe result that for dense systems of finite semiflexible lat- 

tice chains an equilibrium state of long-ranged orientational order (&=-N) do 

not exist, rather short-range order with &N. 
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(3) The configurational orderparameter characterizing the flexibility of the 

chains exhibit a continuous transition corresponding to the transition of each 

individual chain between its random and rodlike configurations. The transition 

curve is well described by the implicit equation (4) at higher temperatures 

(k$/-) 2 whereas the coincidence cfMonte Carlo results and Eq.(4) becomes worse 

the lower the temperature and the longer the chains, indicating the importance 

of the "packing" effect. From this we suggested for N-m a phase transition to 

the long-ranged orientationally ordered state (cati). 

(4) The results quoted above indicate the necessity to improve the concept of 

orientational ordering of finite semiflexible polymer lattice models: obviously, 

and there is some evidence from recent calculations /13/, the inclusion of inter- 

molecular interactions of arbitrary strength would provide a well defined low- 

temperature phase of long-range order, seperated by a genuine phase transition 

from the disordered high-temperature state. 

Finally, it should be emphasised that there are no proofs whether lattice mod- 

els possessing a discrete symmetry exhibit the same phase transition properties 

(i.e. belonging to the same universality class) as real polymeric systems having 

a continuous symmetry. Hence, it could be misleading to compare experimental 

facts with lattice calculations concerning the phase transition. 
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