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ABSTRACT 

The paper introduces the idea of the signa 1 potentia 1 0 having the 
dimension of an electromotive force. lhis signal potent .ial is given by a 
differential equation of the second order refered to the DTA-signal AU. 
Not AU, but @ is directly proportional to the momentary reaction rate. In the 
equation there are only two factors T and r, which are specific instrument 
parameters and easily determinable. 

A method is shown to transform a DTA-peak curve into the signal potential 0 
as a function of time and temperature. @(t,T) is a true picture of the 
reaction rate course. 

INTRODUCTION 

Since the investigations by Borchardt & Daniels (ref. 1) in the early days 

of quantitative DTA the peak curve is supposed to be a source of information 

about reaction kinetics. It is very important to remember that the momentary 

DTA signal is generally not directly equivalent to the momentary heat flux 

or to the rate of the reaction in the sample. This fact is often not taken 

into account, because the successful consideration of the peaks caused by 

very slow reactions as reliable plots of the course of the rate of these 

reactions has frequently misled scientists to use this proceeding for other 

cases, as well. 

Unfortunately Borchardt & Daniels themselves produced the uncertainty in 

the peak interpretation by introducing simplifications into the formulas 

which they had originally developed exactly within the scope of reasonable 

assumptions. The difficulties arose, when they did not specify the conditions 

clearly enough which are justifying the simplifications. The examples reported 

in reference 1 show the half-life of the chosen reactions to be of a higher 

magnitude than the time constant T of the instrument. T is given by dividing 

the heat capacity by the heat transfer coefficient. Only if t,,* >) T the 

mentioned simplified formula reveals the value of the rate constant kr with 

satisfying accuracy. The original unsimplified formula, however, is not 

easy to apply because of its complexity. 
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In order to avoid difficult arrangements it is prefered now to divide 

the approach to the problem into two steps. The first step is the trans- 

formation of the DTA-peak into the curve of the momentary heat flux as a 

function of time or of temperature respectively, and the second one is the 

analysis of the transformed curve for the kinetic characteristics such as the 

reaction order, the rate constant, and the activation energy. The present 

paper deals only with the first step because the science of chemical kinetics 

is disposing of methods which allow to analyse a reaction rate curve. 

For the purpose of a greater mental distinction of the reaction rate and the 

DTA-signal the idea of a signal potential @ is introduced as a tool which 

generalizes the proceeding to include such phenomena too, which are not 

describable by means of regular chemical kinetics. Because 0 = qE, and 

q = dQ/dt, and E is the caloric sensitivity, o is a true picture of the rate of 

heat generation caused by any process in the sample. 0 is equidimensional to 

the signal AU. 

FUNDAMENTALS 

Because of the relationship between a DTA device and a heat conduction 

calorimeter which has already been shown up by S. Spiel (ref. 3), Hemminger & 

Hoehne (ref. 2) reported a differential equation of the second order refered 

to the difference of temperatures in order to describe the heat flux qr 

from or into a reacting sample more precisely: 

qr 
= (AT + adnT/dt + bd2nT/dt2)lR 

w (1) 

wherein a and b are complicated and difficultly determinable constants having 

the dimensions of time and the square of time, respectively, 

The present investigation gives a very similar result when introducing the 

first order differential equation dealing with the so-called thermometer 

problem into the heat flux equation by Borchardt & Daniels. The fundamentals 

of these authors' theory are shown by the figures 1 to 3. They described the 

reaction caused heat flux q, by q, = ATr/Ru + CdAT/dt, but ATr means only the 

difference of temperatures of the substances and not that of the thermocouples. 

In the case of unsteadiness there is also a difference between the 

measuring location and the substance to be expected which is governed by 

TS - T:, = ATSM = T,dT,Jdt. Substituting TS and TR in AT by an arrangement like 

this, the equation for q, becomes 

qr = ATrm/Rw + (7,/Rw + C)dAT/dt + T,Cd2AT:dt2 (2) 

Now nTrm means the difference of measured temperatures of the thermocouples, 

but not that of the substances. Using the formal relations CRU=~2 and 

oAT = AU and uRw = E (E is the caloric sensitivity) the equation can be 

presented in a more practicable form. ois the so-called steepness of the 
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thermocouple arrangement: u = dAU/dt. 

Fig. 1. 

Very simplified model of a DTA device. 

The heat flux F to R is in the steady state 

case q, = (TF-TR)/R2=(CA+CC+CR)dTF/dt 

wherein Rp is the heat transport resistance 

(reasonably should be R,=R2=Rw), C is the 

heat capacity, the indices R,C, and A 

characterize the reference, the crucible, 

and the participating environment. In the 

case without reaction a similar equation 

describes the flux from F to S. Probably 

there is a difference in CS and CR. 

That gives -ATC = (Cs - CR)RwdTF/dt or 

-AUc = (Cs - CR)EB (3) 
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Fig.2. 

Diagram showing the temperatures TF, TR 

and TS. TF and TR are linear functions of 

time, the onset phase excepted. TS is also 

linear in so far as a reaction or a phase 

transition does not occur. The example of 

an endothermic phase transition is shown. 

Fig. 3. Showing the AU-Plot. 

The distance of the base line being parallel 

to time (in this case) is AUc. The 

distance of the peak signal from the base 

line is AU,_. 
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THE SIGNAL POTENTIAL 0 

When the equation (2) is multiplied by dRw at either side, the left-hand 

side gives qroRw. For a shorter version this product qoRw is substituted 

by 3. 3 is called signal potential because it is equidimensional to an 

electric force. Besides 0 represents the electromotive force which would 

formally be generated by the difference of temperatures driving a steady 

flux of q, being equal to the unsteady q,, through the heat transport 

resistance Rw. 

Now, using the abbreviations mentioned in the precedent paragraph and 

those which will be explained later, the 

written in its final form including only 

0 = aUr + rdfiU/dt + (r2/c)d2nU/dt2 

The signal potential 0 is the sum of the 

base line and the first derivation of AU 

equation to calculate Q can be 

two instrument parameters 7 and 

heat 

5 

(4) 

momentary LITA signal nUr over the 

at this point of time multiplied 

by the time constant T and the second derivation multiplied by the square 

of the time constant 7 divided by a dimensionless magnitude c. The calculation 

of o point by point from the peak curve aUr = f(t) gives finally the signal 

potential @ as a function of time t and of temperature T because the sample 

temperature is calculable from the time-linear increasing temperature of the 

furnace or of the reference 

Tl + T2 it may be written: 

T2/', = Y 

T = (1 + Y)T, = T2(1 + 'i)/y 

i1T2 = 7 2/1 

<=Z+y+l/y 

Because l/y<<l: yw<- 

respectively. Remembering 7 to be the sum of 

(7) 

(6) 

2 (9) 

Because of the fact 0 being proportional to q,, @ must be zero if q, = 0. 

This does not imply that the signal AUris to be zero in any case if qr is zero. 

After a short heat impulse q, drops immediately to zero but the signal AU, does 

not do so. Probably the signal even increases for a moment and decreases 

thereafter following the function AU, = exp[-(t-tm)/T2]. In the case of an 

impulse this gives the opportunity to calculate ~2 from the slope of the plot 

of MJ, against at where At is running from the &Jr-maximum to infinity. 

The magnitude of 5 may be estimated by use of the condition that the 

equation (4) has to give 0 = 0 when the impulse is terminated. In a first run 

T is set equal ~2, and 5 is found by trial. Then 7 can be estimated by 

equations (9), (5) and (6). The values are to be improved by recurrence. It mus 

be taken into account that T and 5 are functions of temperature. 

Another paper which is dealing with the exact determination of y and then of 

i will be published together with the results of the investigation of the 
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temperature dependency of t,y,c. and E. 

@(t,T) has interesting properties. In the case of a straight base line 

being parallel to the time axis, integrating lb(t) within the limits from t = 0 

(peak onset) to t = t,,, (peak end practically) gives the same result as 

integrating the peak AU,_ itself within the identical limits in spite of a great 

difference existing propably in shape between the two. The dimensions of the 

integration results are identical, too. 

The connection of the signal potential (11 to the reaction rate y is given 

by the simple equation 
t 

r = $ = - o/AHrE = a> J “’ d,dt 
t=o 

(10) 

As the change of enthalpy AHr belonging to the total conversion of the 

sample and E, the caloric sensitivity, are constants, O(t,T) represents a real 

picture of the reaction rate. 

PEAK ANALYSIS IN PRACTICE 

For the purpose of transforming the peak curve into the curve of the signal 

potential ria by hand, the differential quotients can be replaced by quotients 

of differences. Setting p>Ur = y = f(t) the value of dM/dt at the point of t2 

is calculable with satisfactory accuracy by 

f'&) = [(YS - Y,) + (Y, - y,)1/2at (11) 

The points t,, t2. and t3 have to be equidistant. Now setting f'(t) = y 

equation (11) is also applicable to calculate d2~U/dt2 correspondingly. The 

method to estimate values of -I and of 5 has been shown in the precedent 

paragraph. The sum f(t2) + Tf'(t2)+ (T'/i)f"(t,) is the required O(t2). This 

proceeding is applied point by point. The curve of a(t) is the final result. 

The transformation can easily be performed by means of a computer or a 

similar device fitted with the DTA-instrument, but it is always necessary to 

have the option of checking up the single steps, i.e. the original peak curve 

has to be recorded in any case. The chart speed should correspond to the 

problem. 

The more or less distinct deviation of the shape of Q(t) from the shape of 

the peak curve nUr(t) gives an idea of the kind and the rate of a process 

going on in the sample. 

The experimental investigation was carried out by using a Netzsch-DSC 444 

fitted with a heating element at the sample cell for calibration by electric 

means. A heat impulse was given by a constant current of 27 mA and of 5 seconds 

of duration. The resistance of the heating element at 254'C was Rn = 135.8 Q 

E = E,/n(T)=17.4 uV/mW. Then 0 should theoretically be @qrE=i2RnE=l,726 uV. 

The DTA-record is a peak of regular shape. Fig. 4 shows this peak and the 
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@-curve calculated from this peak by the methods of this paper. 

The impulse is a short one compared with the time constant T which is found 

to be 19 sec. The estimated value of 5 is 23. The calculated D(t) fits in 

with the theoretic impulse rectangle satisfyingly. 

. . ---_ 
.l 

I 

I 

500- I AU, 

I 5 10 15 20 25 set 

Fig. 4 showing the principal section of a peak caused by a rectangular heat 
impulse, the impulse itself (its height in units of qE) and the values of @ 
calculated from the peak point by point. Heating rate B = 5 degrees C per minute. 

The signal curve AU, exhibits intense bendings at the onset range and at the 

apex. Especially in these ranges the measurements of the signal height AU, and 

of the corresponding time t must be very exact ones. Here the measurement points 

should have a distance as narrow as possible. This demand is often not to be 

satisfied because the measuring error weighs with the smallness of the 

magnitudes considered. Therefore the trial is recommended to approach the 

line of values by means of a polynomial. 
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In the case of the example demonstrated above, the peak onset range was 

describable by an expression AUr = a(t2 - t3/4), showing satisfying 

conformity with the peak curve up to t < 1 s. By dimensional analysis the 

more precise approach is expected to be AUr = a(t2 - t3/bT,) where b g 4. 

Then the factor a has the dimensions of an electromotive force divided by 

the square of time. 

Aur = a(t2 - t3/4 7,) (12) 

dAU/dt = a(2t - 3t2/4_;,) (13) 

d2AU/dt2 = a(2 - 6t/4~,) (14) 

At the peak onset (t = 0) both AU, and dAU/dt are zero, but in the case 

of a rectangular heat impulse 0 is not zero at t = 0. @ = i2RnE. If t = 0, then 

d2AU/dt2 = 2a. At the onset is Q = (T2/<)d2AU/dt2, therefore: 

-r2/5 = @(0)/(2a) (15) 

The approach given by equ. 12 is valid in the range of time 0 < t < tk. At 

t = tk the value of d2AU/dt2 becomes zero. The value of "a" is calculable at any 

time smaller than tk by inserting the time t and the measured AU,(t) 

into equ. 12: 

a = AU(t)/(t2 - t3/4T,) 

For the first run it is set T, = 1. By doing this, an approximative 

of a is got (ax). Setting at first T = ~2, equ. 15 shows the way for 

calculating an approximative value of i,,y g 5 - 2 gives an approach y, 

value of y = T~/T,. Then T, = ~~/y and T = T2(y + 1)/y. The repeated 

application of equations (15) and (16) using the values of y and T just 

calculated gives improved results of 5 and y. 

(16) 
value 

to the 

Example: 'r2 = 18.0 s was found from the slope of the descending peak curve. 

At t = 1 s the example of figure 4 yields AU(l) = 39.8 uV. In the first run of 

calculation T, is assumed to be 1, then equ. 16 gives a, = 53.1 uV/s2. 

If Q(O) = 1 726 uV, then (-t2/<), = 16.3 s2 or 5, = &IxTz2/@ = 19.9. 

Y " 5, - 2 giVeS 17.9s,thus T, = ~~/y = 18.0/17.9 = 1.01 s and T = 18.0'18.9/ 

17.9 = 19.0 s. Using these values of T, and of T the calculationsby means of the 

equations 15 and 16 are repeated. That gives finally ~~/r; = 15.2 s2. Then is 

5 = 23, y = 21, T, " 0.8 s, and T = 18.8 s. 

CONCLUSION 

By introduction of the idea of a signal potential @ a relatively simple 

connection between the curves of the signal AU (Peak) and of the reaction 

rate dx/dt = - @,'AH,E has been found (see equ. 4). The formula contains the 

parameters T and T'/c. Methods are shown for estimation of these parameters 
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and for the practical application of the formula to transform the peak curve 

into the rate curve. It is even possible to restore a short rectangular heat 

impulse from the peak curve which was caused by that impulse. In case of a 

regular chemical reaction the equation 22 of the paper of Borchardt & Daniels 

(ref. 1) is after placement of AT by @ unrestricted to be applied to 

calculate the rate constant k. 

The greater the reaction rate the more differs the rate curve as a 

function of time from the peak curve in thermal analysis by Imeans of the 

scanning technique. 

The possibility of exact lmodelling of a real process by transforming a peak 

curve into the a(t)cu enhances the confidence in kinetic investigations 

by means of quantitative DTA. 
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