Hermochimica Acta, 92 (1985) 477-480 Elsevier Science Publishers B.V., Amsterdam

STUDY OF BINARY SYSTEMS $T1VO_3$ -MVO₃ : M = Li, Na

Marcel Touboul *, Bruno Costes and Martine Villatte-Zambetti Laboratory of Structural Chemistry of Materials University P. and M.Curie, Båt.F,4 Place Jussieu 75230 Paris Cedex 05 (France)

ABSTRACT

Using DTA and X-ray diffraction, two new compounds $TINa_2V_3O_9$ and $TILi_2V_3O_9$ have been found in these systems. The thallium metavanadate $TIVO_3$ did not exist under two allotropic forms as found before, in the binary system $TI_2O-V_2O_5$. Besides, the interpretation of the thermal effects in the binary system $TIVO_3$ -NaVO_2 was completely different from a previous one. This may arise from the difference of compounds synthesis methods used in the two studies.

 $TINa_2V_3O_0$ and $TILi_2V_3O_0$ showed a solid state decomposition; their X-ray powder diagrams did not allow to characterize them, because of the continuous presence of the initial compounds $TIVO_3$ and MVO_2 .

presence of the initial compounds TIVO₃ and MVO₃. The examination of the pyroxene structures types occured in the alkaline metavanadates agreed with the existence of such defined mixed compounds : TILi₂(VO₃)₃ and TINa₂(VO₃)₃.

INTRODUCTION

The metavanadates of alkaline or pseudo-alkaline metals (T1⁺, NH₄⁺...) have a pyroxene structure formed by infinite chains of corner-shared VO₄ tetrahedra. According to Hawthorne and Calvo (1) three kinds of chains should be distinguished for LiVO₃, NaVO₃ and the other metavanadates : LiVO₃ and NaVO₃ belong to the monoclinic C2/c group * while KVO₃, RbVO₃, CsVO₃, NH₄VO₃ and TIVO₃ belong to the orthorhombic Pbcm group. Some mixed metavanadates with univalent ions were known; the main method to characterize them is to establish the binary phase diagram between simple metavanadates. From crystallographic and structural data, we may expect that defined compounds exist in TIVO₃-LiVO₃ and TIVO₃-NaVO₃ systems while more or less waste solid solutions should appear between TIVO₃ and the other metavanadates.

MEASURING METHODS

 $LiVO_3$, NaVO_3 and TIVO_3 were synthesized under a dry process by direct reaction between Li_2CO_3 , Na₂CO₃ and recrystallized Tl₂CO₃ with V₂O₅.

* the orthorhombic form of NaVO₃ did not appeared by dry process and its structure were not known (10). Thallium(I) and vanadium(I) contents were determined by chemical analysis(2). Direct and differential thermal analysis were conducted with about 15 and 2g of product; platinum crucibles were used (3). Three experiments on the same mixture were made to reach correct results; those ones were infered from thermal phenomenon raised up at heating.

RESULTS AND DISCUSSION

1) Melting points of LiVO_3 , NaVO_3 and TIVO_3 were respectively 610,618 and 426°C (\pm 2°C). No allotropic transformation was found for LiVO_3 , NaVO_3 and even for TIVO_3 ; for the last compound, this result was inconsistent with the data claimed by Belyaev and al (4). An explanation may be allowed to this desagreement. Considering the relative volatility of thallium(I) salts, we may reasonably think that the thallium(I) metavanadate used by Belyaev and al was soiled with another thallium(I) vanadate richer in V_2O_5 ; this allowed the apparition of a thermal phenomenon with a weaker amplitude around 360°C due to an eutectic equilibrium (stable or metastable) on the DTA curves, according with the binary system $\text{TI}_2O-V_2O_5(2)$. Furthermore we may point out the absence of allotropic transformation for TIVO_3 which is mentionned in the study of binary system $\text{TIVO}_3-\text{AgVO}_3(5)$, and in the numerous works about "TIVO₄" (in fact TIVO₃(2)) synthesized with TI_2O_3 and V_2O_5 (6-9). 2) TIVO₃-LiVO₃ system (fig.1)

Two invariant phenomena, very closed in temperature and sometimes separable with difficulty are shown; the first one, quite weak, at $332^{\circ}C(\pm 2^{\circ}C)$ and the second one at $363^{\circ}C(\pm 2^{\circ}C)$. According to the X-Ray analysis we could put forward the following interpretation; at $363^{\circ}C$, an eutectic equilibrium occurs : liq E (20% LiVO₃) \rightleftharpoons TIVO₃+LiVO₃; the composition of E point is determined by extrapolation of liquidus curve and Tammann diagram; at $332^{\circ}C$ the invariant equilibrium could represent the solid state decomposition of a mixed metavanadate TILi₂(VO₃)₃ characterized by some new lines on the X-Ray powder diagram(table 1); for all mixtures that showed the $332^{\circ}C$ phenomenon during heating, extra lines on X-Ray powder diagrams occured which were more intense after long annealing at 250°C. However, the most intense Tines of TIVO₃ and LiVO₃ powder diagrams were present and led to think that the $330^{\circ}C$ phenomena is not totally reversible.

2) T1V0₃-NaV0₃ system (fig.2)

As in the former diagram, two invariant phenomena occured at 388 and $400^{\circ}C(+2^{\circ}C)$ but the Tammann graphics were better; the first one was weaker than the second one; a same explanation was given. At 400°C an eutectic equilibrium occured; liq E (10% NaVO₃) \rightleftharpoons NaVO₃ + TIVO₃. At 388°C, the invariant

-300

-200

т1v0₃

20

T1Na2V309

40

Wt% Figure 2 60

80

NaVO₃

d (Å)	I/Io	
7.90	m	
5.73	w	
5.41	w .	
4,62	vs	
3,95	s	
3,60	m	
3.24	vs	
2.83	m	
2,73	w	
2.64	w	
2.54	W	
2.49	w	
Table 1		

vs:very strong;s:strong;m:medium; w:weak;vw:very weak

	d(Å)	I/Io
	7.230	W
	5.686	vw
	5.177	W
1	5.147	w
	4.872	`m
	3,322	m
	3.310	vw
	3,290	f
	3.154	vs
	3.102	VW
	3.060	w
	3.041	vw
	2.999	VW
	2.984	VW
	2.887	vs.
	2.767	s
	2.754	vw

Table 2

equilibrium could represent the solid state decomposition of a mixed compound TINa₂(VO₃)₃ characterized by new lines on the powder diagrams of the mixtures (table 2); the diagram interpretation is quite different from the previous one (4) although observed phenomena were similar; an explanation was already given.

Other mixed metavanadates including $NaVO_3$ were found by different studies : $Na_{3}K(VO_{3})_{4}$ and $NaK(VO_{3})_{2}$ (10); $NaK_{2}(VO_{3})_{3}$ and $Na_{2}K(VO_{3})_{3}$ (11); $NaK(VO_{3})_{2}$ (12); $Na_2K(VO_3)_3$ (13); $NaK(VO_3)_2$ (14). The structure of the $NaK(VO_3)_2$ compound was the only one clearly established by Idler and al (15). Another compound $CsNa(VO_3)_2$ was also found in the binary system $CsVO_3$ -NaVO₃ (11).

CONCLUSION

Two new compounds $\text{T1Li}_2\text{V}_3\text{O}_9$ and $\text{T1Na}_2\text{V}_3\text{O}_9$ were found in the two binary diagrams $TIVO_3$ -LiVO_3 and $TIVO_3$ -NaVO_3 which have been totally established.

REFERENCES

- F.C.Hawthorne,C.Calvo,J.Solid State Chem. 22 (1977) 157 1
- M.Touboul, M.Ganne,C.Cuche,M.Tournoux, Z.anorg.allg.Chem.410 (1974) 1 M.Touboul, Rev.Chim.Miner.8 (1971) 347 2
- 3 I.N.Belyaev, T.G.Lupeiko, G.P.Kirii, Russ.J.Inorg.Chem.<u>18</u> (1973) 711 Ã
- L-Mollet, D.Bodiot, S.Dalichaouch, Comptes Rendus Acad.Sci.Paris <u>C27</u>6 5 (1973) 1413
- 6
- P.Fleury, Rev.Chim.Miner.6 (1969) 819 R.Renaud, Rev.Chim.Miner.8 (1971) 633 7
- M.Y.Khodos, B.V.Shulgin, A.A.Fotiev, F.F.Gavrilov, Izvest.Akad.Nauk SSSR, neorgan Mater.<u>8</u> (1972) 1678 8
- 9 R.G.Golovkin, A.A.Fotiev, Russ J.Inorg.Chem.18 (1973) 1367
- J.Perraud, Rev.Chim.Miner.11 (1974) 302 10
- I.N.Belyaev, T.G.Golovanova, Russ.J.Inorg.Chem.13 (1968) 860 11
- M.P.Glazyrin, A.A.Ivakin, A.P.Yatsenko, Russ.J.Inorg.Chem.17 (1972) 280 12
- A.A.Fotiev, M.P.Glazyrin, L.L.Surat, Tr.Inst.Khim., Akad.Nauk SSSR. 13 Ural. Fil.9 (1966) 73
- 14 A.P.Yatsenko, A.A.Ivakin, M.P.Glazyrin, N.S.Matveeva, Russ J.Inorg. Chem.19 (1974) 1735
- K.L.Idler, C.Calvo, H.N.Ng, J.Solid State Chem. 25 (1978) 285 15