Thermochimica Acta, 92 (1985) 501-504 Elsevier Science Publishers B.V., Amsterdam

BEHAVIOUR OF CdC0₃-V₂0₅(1:1M)SYSTEM IN A SATURATED ATMOSPHERE OF WATER VAPOR AT DIFFERENT TEMPERATURES

Mª.E.GARCIA-CLAVEL, S.GOÑI-ELIZALDE[#]and S.FRESNO-RUIZ[#] U.E.I.de Termoanálisis y Reactividad de Sólidos del C.S.I.C. (Serrano 115 dpdo.28006 Madrid.España)

ABSTRACT

The behaviour of an equimolecular $CdCO_2 - V_0$ system in a saturat ed atmosphere of water vapor has been studied at different temperatures. It was found by means of IR spectroscopy and X-ray data, that the $(2-Cd(VO_2)_2)$ is obtained at 150°C. The beginning of reaction is stated for an increase of intensity of (001)X-ray line of V_2O_5 . On the other hand, the adsorbed water molecules might cause the transformation crystalline—amorphous of V_2O_5 , and an increase of acid properties at the V_2O_5 surface.

INTRODUCTION

The high temperature((3) polimorph of cadmium metavanadate has been prepared by heating mixtures of different cadmium and vanadium compounds at temperatures between 650-800°C(1-4), or by heating the low temperature(α)polimorph at 750-800°C(5).Only Bouloux et al.,(6) have obtained it at 460°C by compression of α -Cd(VO₃)₂lattice under 3000bars pressure.Generally it is not obtained pure.

We can get it practically pure at 150° C from an equimolecular $CdCO_3 - V_2O_5$ mixture kept in a saturated atmosphere of water vapor during 24 hours.

The mixture evolution with the temperature has been studied too.At 50° C, the \propto -Cd(VO₃)₂ is detected. This compound has been obtain ed by us in a previous paper (7).

EXPERIMENTAL PROCEDURES

<u>Reagents</u>: V_2O_5 Merck a.r.with a purity > 99%.CdCO₃Riedel de Häen A.G., both identified by X-ray and thermal analysis.

<u>Preparation of samples.</u>We prepared a mechanical mixture of $CdCO_3-V_2O_5(1:1M)$.Grain size < 0.05 mm.Samples of 1g.were kept in a pressure reactor Phaxe 2005 of 100 ml.capacity,under a saturated atmosphere of water vapor during 24 h. This study has been carried out at the following temperatures: 50,75,100 and 150°C.

<u>Techniques:X-ray powder diffraction</u>.Siemens D500 equipped with K805 generator, graphite monochromater and Cu K_{α} , radiation. <u>Infrared</u>

<u>spectroscopy</u>: Perkin Elmer 599B. KBr tablets,0.3%sample concentration. <u>Thermal analysis (TG-DSC)</u>: Mettler TA 3000 Analysis System with TC10TA Processor. The weight for all samples was about 30 mg., an heating rate of 10° C/min. and a N₂ stream.

RESULTS AND DISCUSSION

In Fig.1 we give the X-ray powder diffractograms of mixture $CdCO_3-V_2O_5(1:1M)$ heated at different temperatures.We can see a prog ressive increment of \propto and $(?-Cd(VO_3)_2)$ depending on temperature.At $150^{\circ}C$ the reaction is finished.At this temperature the $(? form is ebtained with an insignificant amount of <math>\propto -Cd(VO_3)_2$.

 $-Cd(VO_3)_2$

Fig.2 shows the IR spectra which are in agreement with the results above mentioned.When the temperature rises, the absorption bands of CdCO₃ and V_2O_5 decrease, and the Cd(VO₃)₂ ones increase. The respectively absorption bands are found at about: CdCO₃:1320-1530,860 and 720(cm⁻¹) V_2O_5 :1020,820 and 590-475(cm⁻¹)(9) Cd(VO₃)₂:550,960 and 850(cm⁻¹)(4) Cd(VO₃)₂:515 and 890-830(cm⁻¹)(4)

The results of thermal analysis are shown in Fig.3(TG) and Fig.4(DSC).The TG curves indicate between 25-100°C a weight loss cor responding to adsorbed water.In samples heated at 100 and 150°C (curves d,e)in which the $(2 - Cd(VO_3))_2$ is the main component, the amount of adsorbed water is minimum.Bet-

ween 350-400°C,CdCO₃decomposes.As we can see in curve (e),the amount of CdCO₃ is very small.This fact confirms the results obtained by X-ray and IR spectroscopy.In curve(c),at about 300° C a small weight loss is detected,very near to CdCO₃decomposition,we think that it is due to loss of CO₂proceding from labile CO_3^{\pm} . The DSC curves show between 25-100°C a first endothermic effect,due to loss of adsorbed water. A second endothermic peak appears with maximum between 392--433°C, which corresponds to CdCO₃decomposition.About 300°C a shoul-

T(°C)	ΔH(J/100mg.)	Content in 100 mg of mixture	
		CdCO ₃ (mg.)	H ₂ O(mg.)
25	25.7 ± 0.2	49.3 ± 0.3	0.7 ± 0.1
50	17.6 <u>+</u> 0.3	32.2 ± 0.2	4.7 ± 0.1
75	9.7 ± 0.4	17.9 ± 0.5	3.9 <u>+</u> 0.1
100	1.8 ± 0.1	2.9 ± 0.2	2.2 ± 0.1
150		1.1 ± 0.5	0.95± 0.05

der is detected in curve(b), and a weak endothermic peak (surve c)which correspond te decomposition of $C0\frac{3}{5}$ more labile. In curve(c)we can see a shoulder between 140-175°C which becomes a peak in curve(e). According to(2) this last peak correspond to $\propto \Im$ transition. On the other hand, it is assigned for Livage(10) or Abello(11) to loss of water molecules more strengly bounded to amorphous V_20_5 .

The TG data and enthalpy of CdCO₃ decomposition are given in Table 1.

Fig.5 shows the reaction volution of $CdCO_3 - V_2O_5mix$ ture with the temperature. It has been made from thermal analysis (TG-DSC) and X-ray data.This last ones has been got by semicuantitative measure of areas on the following peaks: 3.78° for $CdCO_3, 3.52^{\circ}$ for $\alpha Cd(VO_3)_2$ and 3.30° for $G - Cd(VO_3)_2$. This graphic shows the good agreement between the results

obtained by the different techniques employed.

Finally, we propose the following mechanism for the reaction studied by us:

 $V_2O_5(s) + CdCO_3(s) + H_2O(g) \longrightarrow H_2(VO_3)_2(s) + CdCO_3(s) \longrightarrow$ $Cd(VO_{1})_{2}(s) + CO_{2}(g) + H_{2}O(g)$

REFERENCES

1

2

- 3 4
- J.Galy and J.C.Bouloux, C.R.Acad.Sci. <u>264</u> 4 (1967) 388-91 J.Jesse and J.Brown, J.Amer.Ceram.Soc. <u>55</u> (1972) 500-3 J.Angenault, Rev.Chim.minerale 7 (1970) 651 L.Ulicka, Chem. Zvesti <u>30</u> 4 (1976) 409-415 J.Galy and J.C.Bouloux, Bull. de la Soc. Chim.de France (1969) 736 5
- J.C.Bouloux, G.Perez and J.Galy, Bull.Soc.fr.Min.Cristallogr. 6 <u>95</u> (1972) 130-133
- Ma.E.Garcia, S.Goni and S.Fresno, Proceedings 10th I.S.R.S. 7 Dijon (France) August(1984) (in press)
- 8 R.A.Nyquist and R.O.Kagel(Eds.) Infrared spectra of inorganic compounds, Academic Press New York-London (1971)
- T.R.Gilson, O.F.Bizri and N.Cheetham, Dalton Trans. 3 (1973) ٩ 291
- M.T.Vandenborre, R. Prost, E. Huard and J. Livage, Mater. Res. Bull. 10 18 9 (1983) 1133-42
- L.Abello and C.Pommier, J.Chim.Phys.Biol. 80 4 (1983) 373-8 11