Thermochimica Acta, 92 (1985) 567-570 Elsevier Science Publishers B.V., Amsterdam

STUDIES OF Fe2V4013 AND ITS REACTIONS WITH MO03

J.Walczak, M.Kurzawa, L.Trześniowska, Institute of Fundamental Chemistry of Politechnical University of Szczecin Szczecin, Poland

ABSTRACI

A substitutional solid solution has been found to arise in the $Fe_2V_4O_{13}$ -MoO₃ system, in which Mo6+ ions incorporate, in place of V+5 ions, into the crystal lattice of $Fe_2V_4O_{13}$. A maximum solubility of MoO₃ in $Fe_2V_4O_{13}$ makes up at least 35 \times mole of MoO₃.

INTRODUCTION

It has been established that two compounds: ${\rm FeVO}_4$ and ${\rm Fe}_2{\rm V}_4{\rm O}_{13}$ [1,2,3] occur in the Fe₂0₃-V₂0₅ system, being one of the binary systems of the three-component $Fe_2O_3-V_2O_5-MoO_3$ kind. Although $FeVO_4$ is rather a well known compound, the structure and properties of Fe₂V₄O₁₃ are, in fact, not yet known. Until quite lately there have been some doubts whether this compound is really a stable phase. Such a state of investigations of $Fe_2V_4O_{13}$ seems to arise from difficulties in synthetizing the compound 2. At present, however, $Fe_2V_4O_{13}$ is known to melt incongruently with throwing down $FeVO_4/s/s$ [1,2,3]. The melting point of $\text{Fe}_2 V_4 O_{13}$, by our study, is 938 K, acc. [3] - 965 K, acc. [1] - 988 K. Fotier at al. think the melting point of $\operatorname{Fe}_2 V_4 O_{13}$ to depend upon the oxygen content in a gaseous phase, in which the compound is produced. Provided $Fe_2V_4O_{13}$ is synthesized in oxygen $/Po_2 = 1$ atm/, its melting point is 993 K [3]. The density of $\operatorname{Fe}_2 V_4 O_{13/s/}$ is 3,13 [±] 0,05 g/cm³ [2]. The X-ray powder pattern is also known [1,2].

MEASURING METHODS

The samples were prepared from α -Fe₂0₃, V₂0₅ /commercial products of p.a. grade/, and MoO₃, obtained by thermal decomposition of /NH₄/ $_6$ Mo₇O₂₄ · 4 H₂O, in air, at 423 - 823 K. The oxides were weighed, pelletized, and heated in air, in the following cycles: 673 ----773 K - 1 h, 773 K - 24 h, 823 K - 24 h, 823 K - 72 h, 853 K - 24 h, 853 K - 24 h. The preparations produced were slowly cooled to ambient temperature, and then grinded.

Proceedings of ICTA 85, Bratislava

The phase compositions of the preparations were determined by X-ray diffraction /DRON-3, Co κ_{α} /, and on data of ASTM Cards [4] as well on those of publications [5-7].

Thermal analysis was accomplished with the aid of a derivatograph /MOM Budapest/, in quartz crucibles, at the heating rate 10° / min., at the temperature range 293 - 1073 K. The weights of the samples were 1000 mg. The accuracy of the effect temperature readings from DTA curves was estimated on repetitions made for ± 5 K.

RESULTS AND DISCUSSION

Results of X-ray diffraction and those of melting start temperatures with their readings taken from the DTA curves of 26 samples containing an increasing MoO₃ content in the original mixtures are given in the Table.

Table.

Results of X-ray diffraction and solidus line temperatures

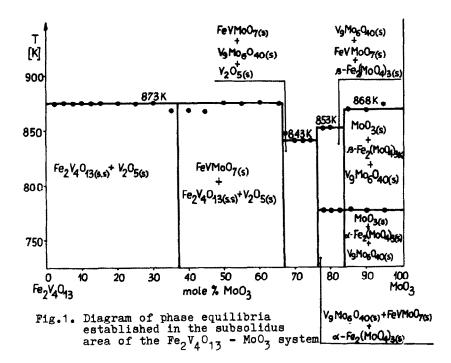
The MoO ₃ content in the original mixture ∜ mole	Detected phase	Solidus line temperatures K
1	2.	3
2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 20,0; 25,0; 30,0; 35,0;	Fe ₂ V ₄ 0 ₁₃ /s,s/ V ₂ 0 ₅	873
40,0; 45,0; 50,0; 55,0; 60,0; 65,0;	^{Fe} 2 ^V 4 ⁰ 13/s.s/, ^V 2 ⁰ 5, ^{FeVMoO} 7	873
67,5; 70,0; 72,5; 75,0;	Fe ^{VMoO} 7, ^V 2 ^O 5, ^V 9 ^{Mo} 6 ^O 40	843
77,5; 80,0; 82,5;	V ₉ Mo ₆ O ₄₀ , FeVMoO ₇ , Fe ₂ /MoO ₄ /3	853
85,0; 90,0; 95,0;	$Fe_2/MoO_4/3$, MoO_3, $V_9MO_6O_4O$	868

A solid solution of MoO_3 in $Fe_2V_4O_{13}$ has been proved, on the experimental evidence, to occur in the $Fe_2V_4O_{13}$ - MoO_3 system. This fact was concluded from the lach of MoO_3 as well of other compounds of molibdenum in the final preparations, which had been comprised

in the original samples, in amounts not exceeding 40 % mole. Consequently, a maximum solubility of MoO_3 in $Fe_2V_4O_{13}$ amounts to, at the very least, 35 % mole of MoO_3 , and it does not exceed 40 % mole of MoO3. The phase compositions of the preparations indicate, as well, that MoO_3 incorporates into the $Fe_2V_4O_{13}$ crystal lattice, to displace V₂0₅ from it:

$$Fe_2V_4O_{13/s/} + MoO_{3/s/} \longrightarrow Fe_2V_4O_{13/s.s./} + V_2O_{5/s/}$$

With the aim of proving the formation of solid solutions, which is accounted for by the incorporation of Mo^{+6} ions, in place of V^{+5} . into the $Fe_{2}V_{4}O_{13}$ crystal lattice; investigations were carried out by means of $Fe_2V_4O_{13}$ and MoO₃ as starting materials, each of the compounds having been prepared individually. The experimental results were identical with those attained from experiments brought about with oxide mixtures as starting materials. MoO_X having reached its solubility limit in respect to $Fe_2V_4O_{13}$, $FeVMoO_7$ is arising in the system - a phase which remains at equilibrium with $Fe_2V_4O_{13}$ /s.s./ till about 67,5 % mole of MoO3.


Its contents increase rapidly with increasing MoO3 content in preparations, the $Fe_2V_4O_{13}$ /s.s/ content decreasing quickly. Above the 67,5 % mole contents of MoOz, X-ray diffraction does not indicate the presence of $Fe_2V_4O_{13}$ at all, whereas $FeVMoO_7$, $V_9Mo_6O_{40}$ and V_2O_5 are at equilibrium in the system. Hence, $Fe_2V_4O_{13}$ is a phase stable only when the MoOz content does not exceed 67,5 % mole. Phase equilibria being established in subsolidus area of the component concentrations are drafted in Fig. 1.

Solidus line temperatures were determined on the first effect start temperatures /the effects are not polymorphic transformations/ recorded on the DTA curves of the preparations. Fig. 1 shows that the $Fe_2V_4O_{13}$ -MoO₃ system is not a true two - component system, even in the subsolidus area. This evidence is supported by the presence of, in this region, areas in which three solid phases are at equilibrium.

REFERENCES

- 1 J.Otsubo, K.Utsumi, J.Chem.Soc.Japan, Pure Chem.Sec., <u>92</u> /1971/ 737
- 2 J.Walczak, J.Ziolkowski, M.Kurzawa, J.Osten-Sacken, M.Lysio,
- Pol.J.Chem., /Formely Rocz.Chem./. In the press A.A.Fotlev, S.M.Cheshnitskii, L.L.Surat, Zh.Neorg.Khim., 28 3 /1983/ 988

- 4 Joint Committee of Powder Diffraction File 5-508, 9-387, 13-543, 18-851, 19-813, 20-526, 24-541, 25-418
 5 J.Walczak, M.Kurzawa, E.Filipek, The Third Polish Seminar to the memory of St.Bretsznajder, Plock, 14-16.IX.1983
 6 J.Walczak, J.Ziołkowski, M.Kurzawa, L.Trzesniowska, J.Therm. Anal., 29. In press
 7 V.Massarotti, G.Flor, A.Marini, J.Appl.Cryst., 14, /1981/ 64

