Thermochimica Acta, 92 (1985) 767-769 Elsevier Science Publishers B.V., Amsterdam

THERMAL DECOMPOSITION KINETICS. FOR NICKEL /II/ OXALATE DIHYDRATE

Azeddine Alloun[†] and C.G.R. Nair, Institut National de l'Enseignement Supérieur en Electrotechnique, Oued-Aissi. Tizi-Ouzou Algeria

ABSTRACT

The thermal decomposition of nickel oxalate dihydrate /NiC₂O₄.2H₂O/ has been studied in detail in a nitrogen atmosphere. Two Elear-Cut and non-overlapping stages are found : Step 1 = dehydration, NiC₂O₄.2H₂O \longrightarrow NiC₂O₄ + 2H₂O, and Step 2 = decomposition, NiC₂O₄ \longrightarrow NiO + CO + CO₂. The temperatures of inception /Ti/, completion /Tf/ and maximum rate of decomposition /Ts/ are recorded. Kinetic parameters /E and log₁OA/ have been computed by the Coats-Redfern method. E ranges from 15 to 20 K cal mole T for step 1 and from 50 to 70 K col/mole for step 2. log₁OA varies from 5 to 8 for step 1 and from 18 to 25 for step 2.

INTRODUCTION

Oxalate decomposition is a time-honoured route for the preparation of metal oxalates has been studied by a large number of workers from very early times. Recently, increasing interest has been bestowed on the Kinetics of thermal decomposition of metal oxalates.^{1,2} As part of a programme of study encompassing simple inorganic compounds, minerals and polymers, we undertook a study of nickel/II/ oxalate dihydrate. The results are presented in this communication. Measuring methods and apparatus a Netszch Combined thermobalance DTA apparatus was employed in preliminary studies and later the detarled studies were made with a Dupont thermobalance 990-951 model.

The studies were acrried out in a dynamic nitrogen stmosphere /gas flow 50 cm³ min⁻¹/. Three sample masses /5,10 and 20 mg/ and three heating rates $/2^{\circ}$, 5° and 10° per minute/ were employed. Temperatures of inception /Ti/, completion /Tf/ and maximum decomposition /Ts/ were recorded. Kinteics parameters /E=energy of activation and A=pre-exponential factor/ were calculated using the Coats-Redfern Equation.

Proceedings of ICTA 85, Bratislava

- 768 -

RESULTS AND DISCUSSION

The results are presented in tables 1 and 2. Table 1 presents the phenomenological data and table 2 gives the kinetics parameters. Table 1 shows that Ti tends to very only slightly when m or \emptyset are varied, whereas Tf and Ts very more markedly. This is in accordance with observations of earlier workers.³ It may be seen from table 2 that E ranges from 15 to 20 Kcal mole⁻¹ for step 1 and from 50 to 70 Kcal mole⁻¹ for step 2, omitting values for which the correlation coefficient is low. log₁₀A varies from 5 to 8 for step 1 and from 18 to 25 for step 2. Quantitative correlations, however, could not be made for these variations.

REFERENCES

1

C.G.R. Nair and K.N. Ninan, Thermochimica Acta 23 /1978/ 161. K.N. Ninan and C.G.R. Nair, Thermochimica Acta <u>30</u> /1979/ 25. S.R. Dherwadkar and M.D. Karkhanawala, Thermal Analysis vol II, Academic Press /1969/ P. 1049. 2 3

Reaction		step 1			step 2			
m (mg)	ø (° _{C min} -1)	Ti	Tf	Ts	Ti	Tf	Ts	
5	2	383	488	476	518	618	603	
	5	408	518	493	568	638	619	
	10	398	533	508	563	648	635	
10	2	398	518	483	548	618	604	
	5	423	526	503	563	645	623	
	10	423	553	518	578	653	635	
20	2	398	528	498	548	618	603	
	5	418	523	508	568	648	604	
	10	416	558	528	563	623	608	
Explanations : m = mass of sample ; Ø = heating rate ; Ti. Tf and Ts are given in Kelvin								

Tabele 1. Effect of variation of m and \emptyset on Ti, Tf and Ts

Reaction		Step 1 ; x=0,65			Step 2 ; x=0,35		
т (пg)	ø (°c min ⁻¹)	Е	A	ሄ	E	A	8
5	2	16,84	2,17 x 10 ⁶	0,9820	35,92	2,11 x 10 ¹¹	0,9388
	5	20,74	1,73 x 10 ⁸	0,9890	55,69	4,53 x 10 ¹⁸	0,9805
	10	16,52	² ,95 ₆ x 10 ⁶	0,9890	61,75	4,74 ₂₀ x 10 ²⁰	0,9894
10	2	17,56	3,12 x 10 ⁶	0,9900	70,44	1,47 x 10 ²⁴	0,9906
	5	20,72	1,03 x 10 ⁸	0,9980	76,38	9,28 x 10 ²⁵	0,9993
	10	18,57	1,17 x 10 ⁷	0,9970	72,22	1,74 ₂₄ x 10 ²⁴	0,9950
20	2	16,72	7,32 x 10 ⁵	0,9924	48,01	3,75 x 10 ¹⁵	0,9660
	5	17,36	^{2,92} x 10 ⁶	0,9960	70,12	5,80 x 10 ² 3	0,9977
	10	15,70	5,20 x 10 ⁵	0,9970	38,10	1,19 x 10 ¹²	0,9777

Tabele 2. Effect of variation of m and \emptyset on E and A

Explanations : E = energy of activation /in Kcal mole⁻¹/ A = pro-experimential factor/in sec⁻¹/ n = order parameter & = correlation coefficient