Thermochimica Acta, 92 (1985) 767-769 Elsevier Science Publishers B.V., Amsterdam

THERMAL DECOMPOSITION KINETICS FOR NICKEL /II/ OXALATE DIHYDRATE

Azeddine Alloun⁺ and C.G.R. Nair. Institut National de l'Enseignement Supérieur en Electrotechnique, Oued-Aissi. Tizi-Ouzou Algeria

ABSTRACT

The thermal decomposition of nickel oxalate dihydrate /NiC₂O₄.2H₂O/ has been studied in detail in a nitrogen atmosphere.
Two clear-cut and non-overlapping stages are found:
Step 1 = dehydration, NiC₂O₄.2H₂O --->NiC₂O₄ + 2H₂O₅ and Step 2 = decomposition, $M1C_2O_4$ \longrightarrow $N10. + CO + CO_2$.
The temperatures of inception $/T1/$, completion $/T1/$ and maximum
rate of decomposition $/T5/$ are recorded. Kinetic parameters
 $/E$ and $log_{10}A/$ have been computed by

INTRODUCTION

Oxalate decomposition is a time-honoured route for the preparation of metal oxalates has been studied by a large number of workers from very early times. Recently, increasing interest has been bestowed on the Kinetics of thermal decomposition of metal oxalates. $\frac{1}{2}$ As part of a programme of study encompassing simple inorganic compounds, minerals and polymers, we undertook a study of nickel/II/ oxalate dihydrate. The results are presented in this communication. Measuring methods and apparatus a Netszch Combined thermobalance DTA apparatus was employed in preliminary studies and later the detarled studies were made with a Dupont thermobalance 990-951 model.

The studies were acrried out in a dynamic nitrogen stmosphere /gas flow 50 cm³ min⁻¹/. Three sample masses /5,10 and 20 mg/ and three heating rates $\frac{2^0}{5^0}$ and 10⁰ per minute/ were employed. Temperatures of inception /Ti/, completion /Tf/ and maximum decomposition /Ts/ were recorded. Kinteics parameters / E=energy of activation and A=pre-exponential factor/ were calculated using the Coats-Redfern Equation.

Proceedings of ICTA 85, Bratislava

$-768 -$

RESULZS AND DISCUSSION

The results are presented in tables 1 and 2. Table 1 presents the phenomenological data and table 2 gives the kinetics parameters. Table 1 shows that Ti tends to very only slightly when m or Ø are varied, whereas Tf and Ts very more markedly. This is in accordance with observations of earlier workers. It may be seen from table 2 that E ranges from 15 to 20 Kcal mole ⁺ for step 1 and from 50 to 70 Kcal mole ⁺ for step 2, omitting values for which the correlation coefficient is low. $log_{10}A$ varies from 5 to 8 for step 1 and from 18 to 25 for step 2. Quantitative correlations, however, could not be made for these variations.

REFERENCES

1 C.G.R. Nair and K.N. Ninan, Thermochimica Acta 23 /1978/ 161. <u>23</u>

 $\frac{2}{3}$ K.N. Ninen and C.G.R. Nair, Thermochimica Acte /1979/ 25. 3 S.R. Dharwadkar and I.D. Karkhanawala, Thermal Analysis vol II, Academic Press /1969/ P. 1049.

$Reaction \longrightarrow$		step 1			step 2		
m (mg)	ø min^{-1} $^{\prime}$ o $_{\rm C}$,	Ti	ጕ	Ts	Ti	Tf	Ts
5	$\frac{2}{5}$ ıò	383 408 398.	488 518 <u>533.</u>	476 4931 508	518 568 563	618 638 648	603 619 635
10	$\frac{2}{5}$ <u> 10</u>	398 423 423	518 526 553	483 503 <u>518 </u>	548 563 <u>578</u>	618 645 653	604 623 635
20	$\frac{2}{5}$ 10	398 418 416	528 523 558	498 508 528	548 568 563	618 648 623	603 604 608
Explanations : \emptyset = heating rate : mass of sample \equiv m Tf and Ts are given in ^O Kelvin Ti.							

Tabele 1. Effect of variation of m and \emptyset on Ti, Tf and Ts

Tabele 2. Effect of variation of m and Ø on E and A

Explanations : $E = energy$ of activation /in Keal mole⁻¹/
 $A = pro-experimental factor/in sec$ ⁻¹/

n = order parameter
 $X = correlation coefficient$