Thermochimica Acta, 92 (1985) 815-817 Elsevier Science Publishers B.V., Amsterdam

THERMOCHEMICAL STUDIES ON THE SYSTEM KC1/CeC1,

G. Thiel, J. Sandrock and H.J. Seifert, Inorganic Chemistry, University GH Kassel, FRG

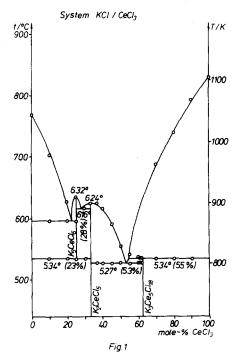
ABSTRACT

The system KCl/CeCl₃ has been reinvestigated by DTA and X-ray analysis. For the existing compounds the crystal structures were determined. Their thermodynamic functions were yielded by solution calorimetry and e.m.f. measurements in a galvanic cell with solid electrolytes.

INTRODUCTION

Our method to get thermodynamic functions for the formation of ternary chlorides in a galvanic cell with solid electrolytes [1] can be applied for tervalent metals too. In this paper our findings concerning the system KCl/CeCl₃ are given

 $KC1 + CeCl_3 = K_nCeCl_{n+3}$


For the formation of the Ce-richest compound the set-up of the cell is: $(C+Cl_2)/KCl_{(S)}/K^+$ -conduct.diaphragm /LaCl₃(+K_nCeCl_{n+3})/(C+Cl₂). The measured e.m.f. E can be transformed into the free enthalpy of reaction ΔG_R using the relation ΔG_R =-n·F·E (n=transported charge, F=Faraday constant). The temperature dependence of the e.m.f. was found to be linear in the range of measurements; thus ΔG_R =a+b·T with a= ΔH_R and b=- ΔS_R according to the Gibbs-Helmholtz relation. Additionally, ΔH_R (298K) was measured by solution calorimetry.

RESULTS

<u>The system KCI/CeCl</u>₃ In an older investigation [2] two compounds are described: K_3CeCl_6 with a phase transition at 512°C and K_2CeCl_5 . A reinvestigation by means of DTA and crystal-powder-X-rax-photographs yielded two corrections (fig. 1): 1) The compound K_3CeCl_6 is stable only at high temperature. 2) A new incongruently melting compound $K_3Ce_5Cl_{18}$ = $KCe_{1.67}Cl_6$. The crystal structures

 $K_3 CeCl_6$: With a high-temperature Guinier-camera a powder pattern

Proceedings of ICTA 85, Bratislava

- 816 -

was taken at 560° C using $A1_{2}0_{3}$ as inner standard. It could be indexed with a cubic cell of the elpasolite type of structure: a=11.241±0.002 Å.

<u> K_2CeCl_5 </u>: The structure determination of Meyer [3] could be confirmed (orthorhombic K_2PrCl_5 -type).

<u>KCe_{1.67}Cl₆</u>: This compound has a hexagonal unit cell which is related to the LaCl₃-structure [4]: one third of the La³⁺-sites is occupied by K⁺-ions; 2/3K⁺ are occupying the position 2b: 0,0,0; 0,0,1/2 of the space group 176-P6₃/m. (For the analogous compound KLa_{1.67}Cl₆ a single crystal investigation gave a reliability value R=0.085 with a statistical occupation model.):

 $a = 7.839 \pm 0.002$ Å $c = 4.256 \pm 0.001$ Å $D_{exp.} = 3.60g \cdot cm^{-3}$ $D_x = 3.56g \cdot cm^{-3}$

AH_R(298K) by solution calorimetry

The apparatus used was a home-built isoperibolic calorimeter [5]. From the enthalpies of solution, ΔH_L , the reaction enthalpies, ΔH_R , were calculated by $\Delta H_R = \{\Delta H_L(CeCl_3) + n \cdot \Delta H_L(KCl)\} - \Delta H_L(K_nCeCl_{n+3})$. Each ΔH_L was measured at least three times; KCl was dissolved in a solution of adequate concentration (dissolution ratio ~1:3500 roles). $\Delta H_L(CeCl_3) = -138.9 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}; \Delta H_L(KCl) = +17.9 \pm 0.1 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta H_L(K_{0.6}CeCl_{3.6}) = -123.2 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1} = \Delta H_R = -5.0 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta H_L(K_2CeCl_5) = -75.8 \pm 1.0 \text{ kJ} \cdot \text{mol}^{-1} = \Delta H_R = -27.3 \text{ kJ} \cdot \text{mol}^{-1}$

EMF-measurements

With the measured values of two samples a linear regression analysis was calculated. The differences between them and the standard deviations were taken for the assessment of the real range of error.

 $\frac{K_{2}CeCl_{5}}{30 \text{ measured points in the range 640-800K}}$ e.m.f./mV=178.87+0.0214 T/K $\Delta G_{8}/kJ \cdot mol^{-1} = -24.2 - 0.0029 \cdot T/K$

(Deviations: $\Delta G_R = \pm 0.3 \text{ kJ} \cdot \text{mol}^{-1}$; $\Delta H_R = \pm 0.1 \text{ kJ} \cdot \text{mol}^{-1}$; $\Delta S_R = 0.2 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$)

 $\frac{K_3CeCl_6}{35}$ Reaction KCl+K₂CeCl₅=K₃CeCl₆ Two Samples with 30 mol-% CeCl₃ 35 measured points in the range 790-870K

e.m.f./mV=-559.3+0.7041·T/K $\Delta G_R/kJ \cdot mol^{-1}=+53.9-0.0679 \cdot T/K$ (Deviations: $\Delta G_R = \pm 0.6kJ \cdot mol^{-1}$; $\Delta H_R = \pm 5kJ \cdot mol^{-1}$; $\Delta S_R = \pm 1J \cdot K^{-1} \cdot mol^{-1}$) $\Delta G_D = 0$ at 794K.

Table 1 Energies for the formation from KCl and LaCl₃ at 298K Compound $\Delta G_{p} = \Delta H_{p} = -(T \cdot \Delta S)$

compound	AG R	^{∆ H} R	-(1.22)	^{∆H} R,calor.
K _{0.6} CeC1 _{3.6}	- 7.6	- 4.9	- 2.7	- 5.0
K ₂ CeC1 ₅	-32.7	-29.1	- 3.6	-27.3
K ₃ CeC1 ₆	+ 1.0	+24.8	- 23.8	-

DISCUSSION

As table 1 shows the compounds K_2CeCl_5 and $K_{0.6}CeCl_{3.6}$ are formed with a gain in lattice enthalpy. Their stability can be discussed mainly considering lattice energies.

The compound K_3CeCl_6 is formed with a great loss of enthalpy. This is correlating with an expansion of the molar volume from 176 cm³ (3KCl+CeCl₃) to 214 cm³ (K_3CeCl_6). This enthalpy loss is compensated by a considerable gain in entropy; above 794K the Gibbs enthalpy for the formation from the adjacent compounds KCl and K_2CeCl_5 becomes negative. It can be assumed that this entropy gain is correlated to the formation of isolated octahedra in contrast to connected polyhedra in KCl and K_2CeCl_5 .

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

REFERENCES

1	H.J. Seifert and G. Thiel, J.chem.Thermodyn. 14 (1982) 1159	
2	Sun In'-Chzhu and I.S. Morozov, Zh.Neorg.Khim 3 (1958) 1914	
3	G. Meyer and E. Hüttl, Z.anorg.allg.Chem. 497 (1983) 191	
4	B. Morosin, J.chem.Phys. <u>49</u> (1968) 3007	
5	G. Thiel and H.J. Seifert, Thermochim.Acta 22 (1978) 363	