Thermochimica Acta, 92 (1985) 823-826 Elsevier Science Publishers B.V., Amsterdam

> THE DTA AND X-RAY PRELIMINARY STUDY OF Rb2Cocl4, Cs2Cocl4 AND L12Cocl4

Piotr Urbanowicz, Joachim Kusz and Jerzy Warczewski^{*} Silesian University, Institute of Physics, ul. Uniwersytecka 4, 40007 Katowice, Poland

ABSTRACT

The DTA and X-ray preliminary study of Rb_2CoCl_4 , Cs_2CoCl_4 and Li_2CoCl_4 is presented. The DTA peaks correspond to the structural phase transitions. The modulated crystal phases for Rb_2CoCl_4 and Cs_2CoCl_4 were found.

INTRODUCTION

The transition points in $/NH_4/_2ZnCl_4$ found by two of us¹ with the aid of DTA, namely: $\sim 263k$, $\sim 323K$, $\sim 393K$, as well as the chemical decomposition point equal $\sim 423K$ have been confirmed by the other authors^{2.3} as being connected with the electrical phase transitions These transition points were - with exclusion of 323K - also confirmed by the X-ray diffraction study^{4.5}. Therefore, a preliminary study of similar compounds, i.e. Rb_2CoCl_4 , Cs_2CoCl_4 and Li_2CoCl_4 , is presented.

EXPERIMENTAL

The obtained compounds as well as the substrata are highly higroscopic, therefore all the operations were carried out in a glovebox in the atmosphere of either dry argon or nitrogen. The substrata were dehydrated by heating the quartz ampules connected with a vacuum pump. Then the substrata were weighed in a glove-box in the stoichiometric relation and placed in an ampule, which was pumped out down to vacuum of $\sim 10^{-1}$ P and sealed. After having mixed the substrata in the ampules, the latter were placed in a resistance furnace and heated up to the melting points of these compounds. After melting the substance in a quartz ampule the furnace temperature was lowered of about 100K and the compounds were heated up during about 2 weeks. Then the ampules were opened in a glove-box and the compounds were prepared to further investigations. In this way the compounds Rb₂CoCl₄, Cs₂CoCl₄ and Li₂CoCl₄

Proceedings of ICTA 85, Bratislava

were obtained. The DTA, DTG and TG /DERIVATOGRAPH Q-1500/ study was carried out for these compounds. The X-ray powder diffractometers HZG 4/A and DRON 3.0, combined with both low temperature attachment URNT-180 and high temperature attachment UWD-2000, were used. The two temperature attachments could be placed not only on the DRON 3.0 diffractometer but also on the HZG 4/A diffractometer with the aid of a special adapter developed by us.

RESULTS

The phase transition points found with the aid of DTA are presented in the table:

Compound	Temperature range, K	Phase transition,K
Rb ₂ CoCl ₄	285 - 823	628, 685
Cs ₂ CoCl ₄	282 - 873	618, 721
Ll ₂ CoCl ₄	288 - 873	543

With the aid of X-ray diffraction the temperature dependence of the lattice parameters for the compounds under study was determined, namely for Rb_2CoCl_4 in the temperature range 103 - 713 K /Fig. 1/ and for Cs_2CoCl_4 in the temperature range 123 - 723 K /Fig. 2/.

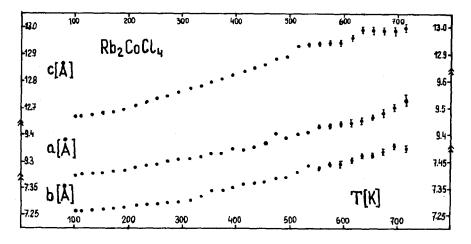


Fig. 1. Lattice parameters for Rb_2CoCl_4 vs. temperature

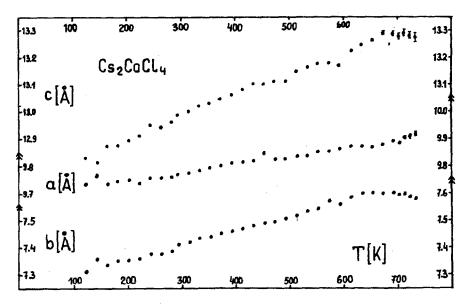
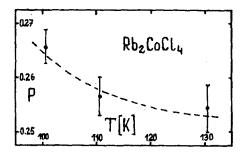



Fig. 2. Lattice parameters for Cs₂CoCl₄ vs. temperature

Above these temperatures the new phases develop for the two compounds, but they remain not identified so far. For Rb_2CoCl_4 in the temperature range 103 - 133 K and for Cs_2CoCl_4 in the temperature range 123 - 290 K the modulation of the crystal structure was observed. The modulation parameter p equal $\left| \overrightarrow{p^*} / \overrightarrow{b^*} \right|$ /where $\overrightarrow{p^*}$ is a modulation vector/ is presented in Figures 3 and 4.

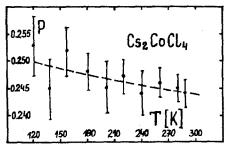
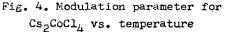



Fig. 3. Modulation parameter for Rb₂CoCl₄ vs. temperature

Partly supported through Project MR I.9.

REFERENCES

- J. Warczewski, H. Broda, J. Kusz, D. Kucharczyk, Acta Physica Polonica, Vol. A59/6/ /1981/ 791
 I. A. Belobrova, A. K. Moskalev, N. V. Bizukina, S. V. Milul, I. P. Aleksandrova, Solid State Commun. Vol. 33 /1980/ 1101
 H. Matsunaga, E. Nakamura, J.Phys. Soc. Jpn. Vol. 50/9/ /1981/ 2700
- 2789
- 4 J. Warczewski, H. Broda, D. Kucharczyk, Phase Transitions Vol. 2 /1981/ 131
- 5 J. Warczewski, D. Kucharczyk, Phase Transitions Vol. 2 /1982/ 255