NON-ISOTHERMAL KINETIC STUDY OF THE DECOMPOSITION OF SOME Fe^{III} AND Cu^{II} COORDINATION COMPOUNDS

MARIA BREZEANU

Chair of Inorganic and Technological Chemistry, Faculty of Chemical Technology, Polytechnical Institute of Bucharest, Str. Dumbrava Roş Nr. 23, Bucharest (Romania)

ADRIANA CONȚESCU

Center of Physical Chemistry, Spl. Independentei 202, Bucharest (Romania)

E. URBANOVICI and E. SEGAL

Chair of Physical Chemistry and Electrochemical Technology, Faculty of Chemical Engineering, Polytechnical Institute of Bucharest, Bulevardul Republicii 13, Bucharest (Romania)

(Received 25 September 1984)

ABSTRACT

This paper contains the non-isothermal kinetic analyses of ten solid-gas thermal decompositions. The values of the kinetic parameters estimated by using two groups of methods show a satisfactory agreement.

INTRODUCTION

In some previous notes we developed several methods for non-isothermal kinetic analysis [1-3]. This paper aims to check their validity on the non-isothermal kinetic analysis of the decomposition reactions of some coordination compounds.

EXPERIMENTAL

The following coordination compounds were used: $NH_4[Fe_2(HCOO)_7] \cdot H_2O(S_1)$; $(NH_4)_3[CuFe(C_2O_4)Cl_2(OH)_4](S_2)$; $(NH_4)_3[CuFe_3(HCOO)_9 Cl_5(H_2O)_6](S_3)$.

The three compounds S_1 , S_2 and S_3 were synthesised according to methods described elsewhere [4]. The thermal decomposition curves were recorded

0040-6031/85/\$03.30 © 1985 Elsevier Science Publishers B.V.

with a Paulik-Paulik-Erdey type derivatograph (MOM, Budapest) with various heating rates between 2.5 and 10 K min⁻¹. To accommodate the limitation of lack of mass transfer, small amounts of powder (up to 0.1 g) were used.

The X-ray powder diffractograms were recorded with a Philips diffractometer (P.W. 1140/90) using chromium K_{α} radiation.

In Table 1 the Bragg angle, θ , interplanar distances, d, relative intensities of the line, i_r , and mean crystallite sizes, r, calculated according to Scherrer's formula are given [5].

The kinetic parameters of the decomposition were obtained by using:

(a) the method of integration over small temperature intervals, M_1 [1],

(b) the method of integration over small temperature intervals, M_{II} [2],

(c) the improved Coats-Redfern method, M_{III} [3].

To check the accuracy of these methods, developed by two of the present authors, the non-isothermal kinetic parameters were alternatively evaluated with the methods of Coats-Redfern, M_1 [6], Freeman-Carroll, M_2 [7], and Achar-Brindley-Sharp, M_3 [8].

RESULTS AND DISCUSSION

Decomposition of S_1

According to thermogravimetric data the decomposition of S₁ exhibits the

		and average a				poundo o l	53
Compou	ind S ₁						
θ	10°24′	18°25′	21°18′	23°24′			
d (Å)	6,329	3.612	3.223	2.877			
ir (%)	100	3.8	33	21			
r (μm)	0.051	-	-	-			
Compou	und S_2						
θ	11°39′	13°36′	16° 4 8′	17° 42 ′	24°30′		
d (Å)	5.652	4.859	3.953	3.758	2.755		
i _r (%)	43	38	19	31	100		
r (μm)	-	-	-	-	0.061		
Compou	and S_{j}						
θ	10°42′	12°	18°24′	18°36′	21°30′	23°36′	24°36′
d (Å)	6.154	5.496	3.620	3.582	3.118	2.854	2.745
i, (%)	100	53	28	'28	32	33	32
<i>r</i> (μm)	0.054	-	-	-	-	-	-

Preliminary	X-ray	diffraction	data	concerning	the	coordination	compounds S	
i i çiti mai y	23°147	unnaction	uaiu	concorning	1110	coordination	compounds 5	1 V

TABLE 2

Thermogravimetric data for reactions I and II

Reaction I									
T (K)	333	343	353	363	373	383	393	403	413
α ^a	0.094	0.153	0.241	0.341	0.471	0.606	0.753	0.859	0.888
$\frac{\mathrm{d}\alpha}{\mathrm{d}T}\times 10^3~\mathrm{(K^{-1})}$	5.3	7.4	9.4	11.5	13.3	14.1	12.7	6.8	5.0
Reaction II									
<i>T</i> (K)	433	443	453	463	473	483	493	503	
α ^a	0.019	0.046	0.081	0.143	0.243	0.370	0.576	0.957	
$\frac{\mathrm{d}\alpha}{\mathrm{d}T}\times10^3~(\mathrm{K}^{-1})$	2.3	3.1	4.9	8.1	11.4	16.7	29.4	22.5	

^a Conversion degree.

following steps

$$NH_{4}[Fe_{2}(HCOO)_{7}] \cdot H_{2}O(s) \rightarrow 2Fe(HCOO)_{3}(s) + NH_{3}(g) + 2H_{2}O(g)$$

+ CO(g) (I)

 $2Fe(HCOO)_3(s) \rightarrow Fe_2O_3(s) + 3H_2O(g) + 6CO(g)$ (11)

The TG, DTG and T data, worked in terms of the conversion, are given in Table 2.

The non-isothermal kinetic parameters for reactions I and II are given in Table 3.

An inspection of the results given in Table 3 shows a satisfactory agreement between the values of the non-isothermal kinetic parameters obtained by our methods and those obtained by other methods given in the literature.

Method	n ^a	$A(s^{-1})$	E (kcal mol ⁻¹)	
Reaction I				
M _{II}	1	5.5×10^{3}	10.4	
Min	1	2.4×10^{3}	9.8	
M ₁	1	3.3×10^{-3}	10.1	
M ₃	1	1.6×10^{3}	9.5	
Reaction II				
M _{II}	0	1.5×10^{7}	21.4	
Mm	0	1.2×10^{7}	21.2	
M ₁	0	6.3×10^{6}	20.7	
M ₃	0	2.8×10^{6}	19.9	

Non-isothermal kinetic parameters of reactions I and II

^a Reaction order.

Decomposition of S₂

The TG curves exhibit the following decomposition steps which occur by heating the samples from room temperature to 600° C.

$$(NH_{4})_{3}[CuFe(C_{2}O_{4})Cl_{2}(OH)_{4}](s) \rightarrow (NH_{4})_{3}[CuFe(C_{2}O_{4})Cl_{2}O(OH)_{2}](s) + H_{2}O(g)$$
(III)

$$(NH_{4})_{3} [CuFe(C_{2}O_{4})Cl_{2}O(OH)_{2}](s) \xrightarrow{1/2O_{2}(g)} [CuFe(CO_{3})Cl_{2}O_{0,5}](s) +3NH_{3}(g) + 2.5 H_{2}O(g) + CO_{2}(g)$$
(IV)

$$[CuFe(CO_3)Cl_2O_{0.5}](s) \xrightarrow{1/4O_2} [CuFeO_2Cl](s) + CO_2(g) + \frac{1}{2}Cl_2(g)$$
(V)

$$[CuFeO_2Cl](s) \xrightarrow{1/4O_2} CuFeO_{2.5}(s) + \frac{1}{2}Cl_2(g)$$
(VI)

The thermogravimetric data and the values of the non-isothermal kinetic parameters of reactions III-VI are given in Tables 4 and 5, respectively.

These results also show for reactions III-VI a quite satisfactory agreement between the non-isothermal kinetic parameter values obtained by various methods.

TABLE	4
-------	---

Reaction III								
<i>T</i> (K)	303	313	323	333	343	353	363	373
α	0.06	0.14	0.24	0.36	0.52	0.66	0.82	0.92
$\frac{\mathrm{d}\alpha}{\mathrm{d}T} \times 10^3 (\mathrm{K}^{-1})$	6	9	11	14	15	15	13	8
Reaction IV								
T (K)	438	448	458	468	478	488	498	
a	0.031	0.079	0.157	0.317	0.561	0.861	0.999	
$\frac{\mathrm{d}\alpha}{\mathrm{d}T}\times10^3~(\mathrm{K}^{-1})$	4	6.3	11.4	20.4	27.7	31.4	14.1	
Reaction V								
<i>T</i> (K)	523	533	543	553	563	573	583	
α	0.101	0.169	0.278	0.435	0.634	0.851	0.981	
$\frac{\mathrm{d}\alpha}{\mathrm{d}T} \times 10^3 (\mathrm{K}^{-1})$	5.5	8.9	13.3	17.8	20.8	17.3	7.5	
Reaction VI								
<i>T</i> (K)	663	683	703	723	743	763	783	
α	0.061	0.146	0.272	0.473	0.708	0.902	0.998	
$\frac{\mathrm{d}\alpha}{\mathrm{d}T}\times10^3(\mathrm{K}^{-1})$	3.1	5.2	8.5	11.4	11.1	6.1	4.5	

Decomposition of S_3

The thermogravimetric data show the following decomposition steps of the binuclear coordination compound S_3

$$(NH_4)_3 [CuFe_3 (HCOO)_9 Cl_5 (H_2O)_6](s) \rightarrow (NH_4)_3 [CuFe_3 (HCOO)_9 Cl_5 (H_2O)_2](s) + 4H_2O(g)$$
(VII)
$$(NH_4)_3 [CuFe_3 (HCOO)_9 Cl_5 (H_2O)_2](s) \rightarrow [CuFe_3 Cl_5 (CO_3)O_2](s) + 3NH_3(g) + 8H_2O(g) + 4CO(g) + 4CO_2(g)$$
(VIII)

$$\left[\operatorname{CuFe_3Cl_5(CO_3)O_2}\right](s) \xrightarrow{1/2O_2} \left[\operatorname{CuFe_3Cl_3(CO_3)O_3}\right](s) + \operatorname{Cl_2}(g)$$
(1X)

$$\left[\operatorname{CuFe_3Cl_3(CO_3)O_3}\right](s) \xrightarrow{1/2O_2} \left[\operatorname{CuFe_3ClO_5}\right](s) + \operatorname{CO_2}(g) + \operatorname{Cl_2}(g) \tag{X}$$

The thermogravimetric data and the values of the non-isothermal kinetic parameters for reactions VII-X are given in Tables 6 and 7, respectively.

Non-isothermal kinetic parameters of reactions III-VI

Method	n	$A(s^{-1})$	E (kcal mol ⁻¹)	
Reaction III				
M _{II}	1.0	2.7×10^{3}	8.9	
M _{III}	1.0	1.1×10 ⁴	9.8	
M ₁	1.0	1.5×10^{4}	10.1	
M ₂	1.1	3.8×10^{4}	9.2	
Reaction IV				
M	0.61	1.5×10^{10}	26.8	
M _{II}	0.66	2.5×10^{11}	29.4	
M _{III}	0.66	1.1×10^{11}	28.7	
M	0.66	1.4×10^{11}	28.9	
M ₂	0.60	1.0×10^{11}	28.5	
Reaction V				
M	0.70	2.4×10^{9}	29.6	
M _{II}	0.66	8.5×10 ⁸	28.8	
M _{III}	0.66	2.3×10^{9}	29.7	
M	0.66	1.2×10^{9}	28.9	
M ₂	0.72	1.3×10 ⁹	29.1	
Reaction VII				
M _{II}	1	1.2×10^{7}	31.4	
M _{III}	1	3.3×10^{7}	32.9	
M ₁	1	1.8×10^{7}	32.2	
M ₂	0.95	5.5×10^{7}	33.7	

22

Thermogravimetric data for reactions VIII-X

Reaction VII								
<i>T</i> (K)	353	363	373	383	393	403	413	423
α	0.12	0.189	0.303	0.432	0.591	0.727	0.833	0.924
$\frac{\mathrm{d}\alpha}{\mathrm{d}T} \times 10^3 (\mathrm{K}^{-1})$	7.2	9.1	12.2	14.7	15.3	12.1	9.7	8.4
Reaction VIII								
<i>T</i> (K)	453	463	473	483	493	503	513	
α	0.047	0.112	0.253	0.453	0.694	0.859	0.970	
$\frac{\mathrm{d}\alpha}{\mathrm{d}t} \times 10^3 (\mathrm{K}^{-1})$	4.7	10.3	17.1	22.1	20.3	13.8	7.1	
Reaction IX								
<i>T</i> (K)	523	533	543	553	563	573	583	
α	0.129	0.201	0.297	0.543	0.627	0.801	0.978	
$\frac{\mathrm{d}\alpha}{\mathrm{d}T} \times 10^3 (\mathrm{K}^{-1})$	6	8.4	12.1	16.5	17.9	17.6	10.1	
Reaction X								
<i>T</i> (K)	673	683	693	703	713	723	733	743
α	0.101	0.153	0.222	0.323	0.443	0.591	0.755	0.901
$\frac{\mathrm{d}\alpha}{\mathrm{d}T}\times 10^3~\mathrm{(K^{-1})}$	4.3	6.1	8.5	11.1	13.4	15.6	15.4	11.5

Non-isothermal kinetic parameters of reactions VII-X

Method	n	$A(s^{-1})$	E (kcal mol ⁻¹)	
Reaction VII				
M ₁	0.96	1.5×10^{3}	9.8	
M _{in}	1.00	3.4×10^{4}	12.1	
M ₁	1.00	1.9×10^{4}	11.7	
M ₂	0.97	5.7×10^{3}	10.7	
Reaction VIII				
M	1.1	5.4×10^{10}	28.4	
M	1.0	7.7×10^{10}	28.8	
Mm	1.0	2.8×10^{11}	30.1	
M ₁	1.0	1.1×10^{11}	29.4	
Reaction IX				
M _{II}	0.50	8.1×10^{6}	23.7	
Mm	0.50	6.6×10^{5}	23.5	
M ₁	0.50	9.4×10 ⁶	23.9	
M ₂	0.57	1.4×10^{7}	24.3	
Reaction X				
M	0.60	1.4×10^{7}	31.3	
м _п	0.66	8.3×10^{7}	34.3	
M _{III}	0.66	4.4×10^{8}	36.8	
M	0.66	2.4×10^{8}	35.8	
M ₂	0.66	6.8×10^{7}	33.7	

For reactions VII-X a quite satisfactory agreement between the values of the non-isothermal kinetic parameters evaluated by various methods can also be noted.

The subunitary values of the reaction order 0, 1/2, 2/3 came from the general rate equation

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = k\,\alpha^m (1-\alpha)^n \tag{1}$$

with m = 0. These values indicate either physical phenomena which are rate limiting (n = 0), or surface-controlled reactions (n = 1/2, 2/3) [9,10]. The values of n close to unity could be assigned to a chemical reaction limited decomposition (for A values close to 5×10^{12} as predicted by the transition state theory [11]). This is perhaps the case for reaction VIII.

As far as reactions I, III, VI and VII are concerned, the first-order kinetic equation which formally describes the decomposition should be treated as a particular form of Avrami-Erofeev [12,13] equation

$$\ln(1/1 - \alpha) = kt^{p}$$
for $p = 1$.
(2)

CONCLUSIONS

The non-isothermal kinetic parameters of ten solid-gas decompositions have been evaluated by using newly worked methods and methods already known in the literature. A satisfactory agreement of the non-isothermal kinetic parameters obtained by the two groups of methods has been noted.

REFERENCES

- 1 E. Urbanovici and E. Segal, Thermochim. Acta, 79 (1984) 441.
- 2 E. Urbanovici and E. Segal, Thermochim. Acta, 80 (1984) 389.
- 3 E. Urbanovici and E. Segal, Thermochim. Acta, 80 (1984) 379.
- 4 M. Brezeanu and A. Contescu, unpublished work.
- 5 A. Guinier, Théorie et Téchnique de la Radiocristallographie, Dunod, Paris, 1964.
- 6 A.W. Coats and J.P. Redfern, Nature (London), 201 (1964) 68.
- 7 E.S. Freeman and B. Carroll, J. Phys. Chem., 62 (1958) 394.
- 8 B.N. Achar, G.W. Brindley and J.H. Sharp, Proc. Int. Clay. Conf., Jerusalem, Vol. 1, 1966, p. 67.
- 9 E. Segal and D. Fătu, Introduction to Non-isothermal Kinetics, Editura Academiei R.S.R., Bucharest, 1983, p. 189 (in Romanian).
- 10 I. Sestak, Thermophysical Properties of Solids, Academia, Prague, 1984, p. 224.
- 11 I.G. Murgulescu, T. Oncescu and E. Segal, Introduction to Physical Chemistry, Vol. II, 2, Editura Academiei, Bucharest, 1981, pp. 157–160 (in Romanian).
- 12 M. Avrami, J. Chem. Phys., 7 (1939) 1103; 8 (1940) 212; 9 (1941) 177.
- 13 B.V. Erofeev, Dokl. Akad. Nauk. SSSR, 5 (1946) 511.