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ABSTRACT 

The behaviour of the calorimetric response in continuous injection devices, which are well 
suited for measurement of excess partial molar enthalpies at different concentrations, is 
analysed by means of heat transport models. Signal analysis of the thermal response gives the 
enthalpy values at very low concentrations. We establish an operating routine for the 
identification of the time-varying device, and a generalized deconvolution procedure to 
obtain, with high accuracy, the power released in the calorimeter as a function of time. The 
main features considered are the changes in sensitivity and dynamic properties of the 
experimental system due to the injection of one component in the mixture. A formal 

decomposition of the heat transport equations shows that typically time-invariant methods 
are able to deal with deconvolution in non-invariant systems. 

INTRODUCTION 

Heat flux microcalorimetry is a well-established experimental technique 
for the measurement of small thermal energies [l]. By means of signal 
analysis it can be extended to the determination of the thermal power 
released in an experiment at every instant of time. Recently, a great effort 
has been devoted to equate the identification and deconvolution techniques 
to the calorimetric problem [2,3,4], and to evaluate their performances. 
Numerous different calorimeters have been used to test the quality of 
recovery of the thermal power achieved with the different techniques. On the 
other hand, calorimeters have also been applied to two different kinds of 
measurements: the enthalpy involved in solid phase thermoelastic transfor- 
mations, such as that of the copper/zinc/aluminium alloy [5,6], and the 
excess partial molar enthalpies of binary mixtures measured by continuous 
injection of a component [7]. 
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In the former, the results obtained by deconvolution of the thermograms 
have highlighted the essentially discontinuous character of the transforma- 
tion, in accordance with the corresponding acoustic emission. 

In the latter, signal analysis has opened up a wider range of minimum 
molar fractions (from the value of 0.05) in static mixing measurements. In 
this case, however, the heat capacity of the calorimetric vessel changes with 
time due to the injection. This fact makes it clear that the classical time-in- 
variant deconvolution techniques are not appropriate for calorimeters with 
high sensibility and high signal-to-noise ratios; some experimental evidence 
of the change in the dynamic properties of the system as a function of time 
has been found [8,9,10]. Additionally, there has been an attempt to extend 
the time-invariant deconvolution methods, from an experimental point of 
view, to time-varying systems [ll]. 

In preliminary studies of heat transport models, temporal non-invariancy 
appears as a result of variation in the heat capacity of the calorimetric vessel 
with time. This change is due to the injection of a component into the vessel, 
and as the injection rate is kept constant, the heat capacity variation is 
supposed to be linear [12,13]. This kind of model reproduces quite well the 
decrease in the steady-state temperature with injection and, qualitatively, the 
dependence of such a decrease on the injection rate, the specific heat of the 
liquid injected and the value of the thermal power released in the process. 
Appropriate procedures to take these effects into account, paying special 
attention to experimental feasibility, have already been outlined [14]. 

However, some continuous injection devices also exhibit a change in their 
sensibility with time, depending upon the volume of the cell contents; such 
an effect is impossible to account for with models in which only the heat 
capacity of the vessel changes with the injection as a function of time. 

The purpose of the present paper is two-fold: (1) to generalize the models 
for continuous injection calorimetric devices in a way that includes not only 
the change of the steady-state temperature with the injection, but the 
experimental evidence that the sensibility of the instrument evolves as well; 
(2) to extend the methods for the identification of the dynamic behaviour of 
the calorimetric system and subsequent deconvolution of the thermal re- 
sponse to the non-invariant situation, in order to reconstruct the input 
signal, i.e., the instantaneous thermal power in the mixing process, so that it 
is free from systematic errors. 

MODEL OF THE TIME-VARYING CALORIMETER 

For the calorimetric model to be representative of the actual system, its 
characteristics must depend strongly on the signal-to-noise ratio in the 
corresponding thermograms. The usual experimental conditions centre 
around signal-to-noise relations less than or equal to 50 dB, although values 
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Fig. 1. Schematic representation of the calorimetric model in terms of heat capacities C, and 
thermal couplings P,,. The parameters C, and P,, vary with time due to the injection of 
liquid into the vessel. 

of 70 dB or higher could be attainable in some special devices. In these 
particularly favourable conditions, the effects of injection become increas- 
ingly important. Furthermore, there is a modification in the thermal balance 
of the calorimeter because the injected liquid enters the vessel at the 
temperature of the external thermostat. Generally, a third-order model is 
detailed enough to describe these main features, however, it can be readily 
generalized to higher orders when necessitated by the quality of the thermal 
signals. The model, schematically shown in Fig. 1, is described in terms of 
localized constants [15] by the following system of equations 

w,(t) = C,(Nl + P,,(Wl - T,l + [W +~I,1 PI - T,l 04 
0 = Gi; + %W[T, - Tl + fw2 - T31 (lb) 
o=c3i;+P23[T3-T2]+P30[T3-To] (14 
where C,(t) represents the heat capacity of the vessel, in which the heat 
dissipation W,(t) takes place, and P,,(t) represents the thermal coupling 
between the vessel and the rest of the calorimeter. Both parameters change 
with time as a consequence of the change in vessel contents during the 
injection. The thermal response is given by the temperature difference 

(T3 - T,). 
Assuming 0, = T, - To, where To stands for the constant temperature of 

the thermostat, the system (1) can be rewritten in the form 

w,,(t) = w,(t) - w,,(t) - J%(t) = I? Ntfj 
r=O 

w,,(t) = G(t) It E,(f)$ 
i=o 

w,,(t) = -&z(t) t q(t)? 
r=O 

(24 

w 

(24 

System (2) can, in turn, be converted into one linear differential equation 

w,(t) = t D,$ 
r=O 

(3) 
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Fig. 2. A. Thermal curves f?, (K) obtained from the model for a constant dissipation WI =1 
W between t = 50 s and t =c 3000 s. Curve (a) corresponds to a constant coupling PI2 = 0.28 
W K-r, curve (c) to a constant coupling P,z = 0.14 W K-r and curve (b) to a coupling P,z 
that varies Iinearly from 0.14 to 0.28 W K-t during the power dissipation. In the three cases, 
the heat capacity varies from 5 to 10 J K-‘, and the other parameters are kept constant. B. 
The three components in which the thermal power J-VI has been separated. JV,, carries all the 
dependency on 6;, while JV,, carries a11 the dependency on -i),,. In the picture below, the 
initial part of W,, is shown with a greater magnification. 
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The formal analogy between eqns. (2a) and (3) should be noted. The 
coefficients D,(t) in eqn. (2a), considered at t = t,, coincide with those of a 
time-invariant system that has the same level of liquid in the cell as the 
general variable model has at t = t,. The impulse response of such an 
invariant system is defined by a certain area S and a set of time constants 
{ r, } verifying 

D, = ( 7lT273 )/s (44 

D2 = (7172 + 7173 + 7273)/S (4b) 

D,=(T1+72+73)/S (44 

Do = l/S (4d) 

where all the values are supposed to be taken at t = t,. By formal analogy 
with the time-invariant situation, we may rewrite the preceding equations for 
the coefficients 0; in differential eqn. (3) by substituting the parameters 
I, and .S(t) by certain other parameters I,’ and S’(t). 

Figure 2A shows the response of the model to a constant input power in 
three different cases: one with a linear evolution of the coupling P,2(t) 

during the interval of dissipation and two others with two extreme constant 
values of P,2. The variation of the coupling is responsible for the change in 
sensibility with time. In contrast, Fig. 2B shows the three different terms in 
which the thermal input power W,(t) has been decomposed in eqns. (2). It is 
clear that the major contribution to WI(t) is given by Wlo(t), which might 
be obtained directly from the values of r,(t) and S(t). However, neglecting 
the two other terms, which carry the dependence on c$( t) and P,,(t), would 
represent a systematic error on the determination of W,(t), especially in 
those cases where it is possible to obtain high-quality thermograms. 

SYSTEM IDENTIFICATION 

Identification of the parameters ri( t) in eqns. (4) may be performed by 
stopping the injection, and consequently the dissipation, at different times 
t,, considering the decay to zero of the thermogram as the response to a 
stepped input, and applying classical time-invariant methods of identifi- 
cation [16]. Through eqns. (4), the coefficients D,(t) in eqn. (2a) are 
determined, except for the value of the sensibility S(t). The latter may be 
obtained from calibration by means of the Joule effect. 

Unfortunately, the remaining terms W,,(t) and W,2(t) cannot be calcu- 
lated directly from the thermogram and the coefficients D,(t). An alternative 
approach consists of considering the whole of eqn. (3) and the symbolic 
expression of its coefficients D,‘(t) in terms of parameters r,‘(t) and S’(t). 
Numeric simulations for different models described by eqns. (1) show that 
these parameters have the same functional dependence on time as the 
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Fig. 3. Dynamic parameters and sensibility of the model as a function of time. A represents 
the unprimed parameters; q represents the primed parameters. Least-squares fits to second- 

degree polynomials are also shown. 

corresponding ri( t) and S(t), and are only shifted from them by certain 
constant values Ar, and AS, as shown in Fig. 3. The shift can be evaluated at 
two different times, e.g., at the beginning and at the end of the injection, by 
determining the corresponding r,‘(t) and S’(t) by means of a generalized 
identification method. The method is based on inverse filtering and r,’ play 
the role of the time constants to be identified, in the form 

r,‘(t) = I, +Ar, (5) 

The time dependency is centred on r,(t), which are known from time-in- 
variant identification as described above, and the increments Ar, are de- 
termined by optimizing the result of inverse filtering. S’(r) is obtained by 
comparing the reconstructed thermal power (in arbitrary units) obtained 
from a standard mixture with the corresponding tabulated values of the 
partial molar enthalpies of the mixture at different concentrations. 

From an experimental point of view, the whole identification procedure 
can be summarized as follows. 

(i) The parameters am are identified, by means of invariant methods, 
from the thermogram decays corresponding to halts in the injection at t = t,. 
This is done for every different binary liquid mixture studied. 

(ii) Consider experiments in which a constant thermal power is released by 
means of the Joule effect and, simultaneously, liquid A is injected into a 
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vessel already partially filled with liquid A. From the thermogram obtained 
after stopping the heating, but not the injection, and by means of variable 
inverse filtering, the increments Ar, may be determined. It is not difficult to 
see that, in this case; Ci( t) # 0 and pi,(t) # 0. 

(iii) The time-varying sensibility S’(t) is determined by calibration with 
standard binary mixtures. 

THERMAL POWER DECONVOLUTION 

Given the values of 7,‘(t) and S’(t), the coefficients D,‘(t) in eqn. (3) can 
be obtained immediately. The thermal power released in a certain experi- 
ment is then obtained, through eqn. (3), by numerically calculating the three 
first derivatives of the corresponding thermogram e,(t), weighting them with 
the coefficients D,‘(t) at every instant of time, and adding the resulting four 
terms. This procedure is, in fact, a generalization to the time-varying case of 
the well-known inverse filtering. 

It is not necessary to carry out a new identification for every binary 
system under study. Considering different initial values of the heat capacity 
C,(t), computer simulations of the calorimetric model described by eqns. (1) 
show that the shift values Ar, and AS depend essentially upon the product 
pc (density X specific heat) of the liquid injected into the calorimetric vessel 

N 4 
\ 

Fig. 4. The shift in the parameter 7,, divided by z, versus z. The variable z stands for the 
values pc corresponding to different liquids, referred to a certain initial value pOcO corre- 
sponding to the choice of C, in our model. 
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(Fig. 4). Generally, the values of interest for the product pc fall in a certain 
limited range. The experimental procedure should be as follows: 

(i) To perform calibrations using two different liquids whose values of pc 

represent the actual limits for the mixtures of interest: plc, < pc < p2c2. To 
calculate their corresponding shifts Ap(1) and Ap(2) in the parameters, 
where p represents either rl or S. This is done following the steps outlined in 
the preceding section. 

(ii) To take the linear dependence between Ap/pc and the product pc for 
every injection rate. The change Ap( x) for the parameter p with the liquid x 
is then given by 

Apt4 Ap(l) + AP(~)/P,c, - Ap(l)/~,c, APO) -=- ~-~ 
PXCX PA P2C2 - PlCl PA 

(6) 

Remark 

Once the values of the coefficients D,‘(t) in eqn. (3) have been determined, 
it is possible to apply any time-invariant deconvolution method to obtain the 
input W,(t). The problem of deconvolution in a time-varying system has 
been reduced to a multiplicity of time-invariant deconvolution problems. 
The coefficients D,‘(t) in eqn. (3) may be fitted against polynomials of the 
variable t. The degree n of the polynomials should be chosen according to 
the required precision and the number of invariant identifications per- 
formed. Then, the coefficients read 

D,‘(t) = f: D,‘,tJ 

and 

d’e 
W,(t) = i WiJtJ = i 2 D:,tJ---$ 

J=o I=0 J=o 

(7) 

(8) 

The calorimeter is then represented by n + 1 transfer functions which, in the 
Laplace space, read 

T,(s) H,(s)=-----= 
w;,b) 

1 (9) 

T3(s) and W,‘,(s) are the Laplace transforms of OS(t) and Wi,( t), respec- 
tively. From the knowledge of the transfer functions H,(s), time-invariant 
deconvolution methods lead to the values of W;,(t) and therefore to the 
power input W,( 1). 

EXAMPLES OF APPLICATION 

A third-order calorimetric model, described by eqns. (1) has been consid- 
ered. The parameters for this model have been arbitrarily chosen to obtain a 
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TABLE 1 

Values of the heat capacities C, and thermal couplings P,, for the calorimetric model in Fig. 1 

C, (J K-‘) C, (J K-‘) P,, (W K-‘) Px, (W K-‘) PD (W K-‘) 
11 12 0.07 0.07 0.14 

t (s) C,(t) (J K-‘) 
O<t<50 5 

50<r<3000 5 + (t - 50)/590 
3000 6 t 10 

p,z(t) (w K-‘1 
0.14 

0.14 + 0.07( t - 50)/1475 
0.28 

set of time constants with the same order of magnitude as in actual 
continuous injection calorimeters, and are given in Table 1. 

Figure 3 shows the values of T,( tk) and S(t,) for this model, calculated 
from eqns. (4). They correspond to the parameters that would be obtained, 
by means of time-invariant identifications, from the decays to zero of the 
experimental thermograms when the injection is halted to stop at t = t,. A 
least-squares fit to second-degree polynomials, also shown in Fig. 3, leads to 

7, = 221.26 + 4.31E - 3t + 1.34E - 6t2 (s) (W 

72 = 40.24 + 2.76E - 3t - 2.34E - 7t2 (s) (lob) 

TV = 18.04 - 7.39E - 4t - 5.86E - 8t2 (s) (IOc) 

S = 4.77 + 2.29E - 4t - 2.93E - 8t2 (K W-l) (IOd) 

The values of r,‘(t) and S’(t) are also presented in Fig. 3. They have been 
obtained from the coefficients D,‘(t) of the complete variable model. Least- 
squares fits give 

r; = 218.65 + 4.11E - 3t + 1.34E - 6t2 (s) (W 

7; = 40.16 + 2.77E - 3t - 2.35E - 7t2 (s) @lb) 

~3’ = 18.07 - 7.46E - 4t - 5.81E - 8t2 (s) (W 

S’ = 4.71 + 2.24E - 4t - 2.86E - 8t2 (K W-‘) (1 Id) 
It is clear from the figure that the temporal behaviour of the primed and 
unprimed parameters follows a regular pattern, which is reinforced by the 
similarity between the coefficients on t and t2 for the corresponding 
parameters in eqns. (10) and (11). The mean shifts between the primed and 
unprimed parameters are given by 

Ar, = -2.922 s 02a) 
Ar2 = -0.066 s (I2b) 
Ar3 = 0.024 s (12c) 

AS = -0.063 K W-’ (I2d) 
These shifts can be obtained from I-,‘(t) and S’(t) identified at two different 
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Fig. 5. Reconstruction of the thermal power W,(t) from the thermogram e3( f) by means of 
time-varying inverse filtering. In the picture below, for comparison with Fig. 2B, the thermal 

power is shown with a greater magnification. 

times. The identification, as mentioned above, is performed by means of a 
variable inverse filtering where the dependence on t is taken from that of 
7,(r) and S(t). 

Figure 4 shows the values of Ar, for different volumic heat capacities pc 
or, in other words, for different liquids that may be injected. They have been 
simulated with different initial values of the heat capacity C,(t) in the model 
described above (Table 1) while keeping the other parameters at their 
original values. The result is fitted to a straight line which represents eqn. (6). 

Finally, Fig. 5 presents the resulting thermal ,power input after a decon- 
volution of the thermograms in Fig. 1. The deconvolution has been per- 
formed by means of a variable inverse filtering, using the values of 7,‘(t) and 
S’(r) given by eqns. (11). The recovery of the power is shown to be highly 
accurate even at the initial times of the dissipation. In a mixing experiment, 
these initial times could correspond to very low concentrations of the 
injected liquid in the mixture. 

CONCLUSIONS 

(1) Microcalorimetric devices with continuous injection, as those used for 
the study of liquid mixtures, present a variation of their sensibility and 
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inertial properties with time. If the quality of the thermal signal is consider- 
able (signal/noise greater than 50 dB), then neglecting this variation results 
in systematic errors on the thermal power recovered. 

(2) By means of several classical time-invariant identifications performed 
in every experiment, the invariant parameters 7,(t) and S(t) are evaluated. 
They are only shifted by a constant value from the 7,‘(t) and S’(t) values, 
which completely describe the calorimeter. 

(3) A variable identification gives the shifts in the invariant parameters 
7,( t ) and S( t ), from which the corresponding variable parameters are 
deduced. This identification has only to be performed for two different 
liquids corresponding to extreme values of the product pc (density x specific 
heat of the liquid). The correcting shifts for other substances are calculated 
from a linear interpolation. 

(4) The thermal power released in the experiment can be determined, as a 
function of time, either by time-varying inverse filtering or by any classical 
time-invariant method of deconvolution using a hierarchy of transfer func- 
tions. 
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