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ABSTRACT 

Using solid-state kinetics, analytical mathematical expressions are derived which describe 
the pattern generated during a temperature-programmed reduction (TPR) experiment con- 
ducted under differential conditions. From these expressions the influence of the heating rate 
on the TPR peak maximum can be established; it is shown that this influence can, in 
principle, be approximated by Kissinger’s equation, independent of the reduction mechanism 
selected. 

INTRODUCTION 

Many methods exist which measure rates of reaction between gases and 
solids when the temperature increases linearly with time; examples of such 
methods are DTG, ‘DTA and TPR. The mathematical description of the 
reaction rates as a function of temperature as measured with this equipment 
has until now been limited to descriptions using simple fluid-solid reaction 
mechanisms like the power law [l-4]. In a previous paper [5] a method has 
been described to calculate TPR patterns using reduction mechanisms ob- 
tained from solid-state kinetics. These mechanisms have the advantage of 
possessing more physical meaning than power-law mechanisms and compari- 
son of thus-calculated patterns and measured patterns can give information 
about the structure of the solid under study. This has been shown in a 
previous paper [5] where these reduction mechanisms were successfully used 
to model the reduction of small Fe,O, particles using TPR experiments. 

The method for the calculation of TPR patterns described in ref. 5, 
however, requires a numerical differentiation step. In the present paper 
expressions will be derived from which TPR patterns can be calculated 
without the need of numerical procedures. Using these expressions, Kis- 
singer’s equation [l], which is used by many authors to determine the 
activation energy from the measured peak shift as a function of the heating 
rate [3], is shown to be approximately valid, independent of the reduction 
mechanism. 

0040-6031/85/$03.30 Q 1985 Elsevier Science Publishers B.V. 



68 

THEORY 

In a TPR experiment a solid reacts with hydrogen to form another solid 
while the temperature increases linearly with time at a heating rate 9. The 
reduction rate can thus be expressed as [2] 

where (Y stands for the degree of conversion of the solid reactant. The 
temperature dependence of the reaction rate constant, k, (T), can be 
expressed using the Arrhenius equation. When differential conditions exist, 
the gas-phase dependent term f’( pHz, pHzO) is constant. Equation (1) thus 
reduces to 

da A 

dT = T 
eeEIRTf( a) 

Equation (2) is a differential equation, the solution of which gives (Y as a 
function of T. If this function is differentiated, the resulting da/dT vs. T 
function describes the TPR pattern. For the differential equation (2), sep- 
aration of variables is possible, leading to 

For some gas-solid reaction models which are relevant to reductions, g(a) 
functions are given in Table 1. The models which were selected are rep- 
resentative for the different rate-determining processes as proposed in solid- 
state kinetics. Their physical meaning is described elsewhere [6,7]. 

The temperature-dependent part of eqn. (3), S(T), 
analytically. However, many good approximations for 
which the following was found to be very easy to use 
purposes [8] 

e- E/RT AT e- E/RT 

stT’=% (E/RT)[2+(E/RT)] =?- 2+(E/RT) 

cannot be solved 
S(T) exist 121, of 
for computational 

(4) 

Equation (4) gives an error in S(T) of less than 1% for E/RT> 10 [13]. 
From eqn. (3), it can be established that 

Equation (5) holds when To is much smaller than T. From eqn. (5)it follows 
that 

d’S( T) dT~ = &{ $e-EIRT) = $e-E/RTE/RTZ = E/RTz!$L (6) 
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Using eqns. (3)-(5) and Table 1, an analytical expression for a TPR pattern 
can be obtained. As an example of such an expression, a TPR pattern for the 
three-dimensional nucleation model according to Avrami will be calculated. 
Inserting in eqn. (3) the g(a) function for this model as given in Table 1, one 
obtains 

[ -3 ln(1 - ‘~)]l’~ = S(T) 

Equation (7) can be rewritten as 

(y = 1 _ e-v3s(T)’ 

From eqn. (8), in combination with eqn. (5), it follows that 

(7) 

(8) 

da 
dT=e 

- v3mq 77) 2dSo = i!e-E,RTS(T)2 e-‘/3S(T)Z 

dT .+ (9) 

Equation (9) describes the reduction rate as a function of temperature under 
temperature-programmed conditions, i.e., a TPR pattern. 

In Table 1 expressions similar to eqn. (9) are given which describe the 
TPR patterns for the different reduction mechanisms selected. These TPR 
patterns can be calculated using eqn. (4) as approximation for S(T). 

The above-derived equations can also be used to calculate the displace- 
ment of the TPR peak maximum as a function of the heating rate. This can 
be done as follows. 

At the TPR peak maximum, T = T,,, the following equation holds 

= 0 

Again taking as an example the three-dimensional nucleation model of 
Avrami, eqn. (10) can be solved. Combination of eqn. (9) with eqn. (10) gives 

d2a! 
s=e 2S(T)-ZS(T)']+S(T)"-#=O 

From eqn. (11) in combination with eqn. (5) it follows that 

A 
-e-E/RT;,l.x[2S(T,,,)-S(~,,)4] + S(T,,,)2--& = 0 
G max 

Rearranging eqn. (12) leads to 

Taking logarithms gives 

ln( +/Tda,)= ln( AR/E)-E/RT,,, + In 
S(T,,,, )’ - 2 
S(Tmax) 

(12) 

(13) 

(14) 
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Equation (14) gives the relationship between $I and T,,, for a reduction 
according to the three-dimensional nucleation model of Avrami-Erofeev. 
For the other reduction models in Table 1, similar expressions can be 
derived, which can all be described according to 

l&/T&) = ln(AWE) -E/W,,, + C(S(L,)> (15) 

in which C( S( T,,,)) is a function of S( T,,,) alone. The expressions for 
C( S( T,,)) for the different reduction models used in this study are given in 
Table 1. 

The equation which is generally used to describe the change in T,,, with 
the heating rate, $I [l-4], is the following, which was first derived by 
Kissinger [l] 

ln( +/T:,,) = - E/RT,,, + C’ (16) 

in which C’ is a constant. This equation has been used with success in many 
studies using temperature-programmed techniques such as TPR [3-5,9-121. 
It can be seen from eqn. (15) that when the change in the value of 
C(S(T,,,)) upon increasing or decreasing the heating rate, 9, is much 
smaller than the change in the values of both ln(+/Tiax) and E/RT,,,; 
C( S( T,,,)) can be approximated by a constant, allowing eqn. (16) to be 
valid. This does not always have to be the case, however: if the A and E 
values and the reduction model for the reduction of small Fe,O, particles, 
described in a previous paper [5] (A = 1.5 x lo6 s-l, E = 111 kJ mall’ and 
the three-dimensional nucleation model according to Avrami-Erofeev as 
reduction model), are used, application of eqn. (16) leads to a systematic 
error of about 5% in the activation energy if measurements are conducted at 
heating rates between 0.2 and 20 K mm-‘. This error has the same order of 
magnitude as the error caused by the measuring method. 

Summarizing, it can thus be concluded that eqn. (16) can, in principle, be 
used to determine the value of the activation energy, E, from the change of 
T,,, with the heating rate, $. Deviations from eqn. (16) however, can occur, 
but this can be checked using eqn. (15) in combination with Table 1. 

CONCLUSIONS 

TPR patterns can be described by analytical expressions using solid-state 
kinetics; such equations are tabulated in Table 1 for reduction models 
representative for the different rate-determining processes as proposed in 
solid-state kinetics. 

Kissinger’s equation (eqn. 16) can, in principle, be used to determine the 
activation energy from the change in the TPR peak maximum with the 
heating rate; when the value of the pre-exponential factor and the reduction 
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model are also known, its use can be checked with eqn. (15) in combination 
with Table 1. 

REFERENCES 

7 
8 
9 

10 
11 
12 

H.E. Kissinger, Anal. Chem., 29 (1957) 1702. 
J. Sestak, V. Sastava and W.W. Wendlandt, Thermochim. Acta, 7 (1973) 333. 
D.A.M. Monti and A. Baiker, J. Catal., 83 (1983) 323. 
N.W. Hurst, J.J. Gentry, A. Jones and B.D. Mitchell, Catal. Rev., 24 (1983) 233. 
O.J. Wimmers, P. Amoldy and J.A. Moulijn, J. Phys. Chem., submitted. 
L.G. Harrison, in C.H. Bamford and C.F.H. Tipper (Eds.), Comprehensive Chemical 
Kinetics, Vol. 2, Elsevier, Amsterdam, 1972, p. 377. 
J. Sestak and G. Berggren, Thermochim. Acta, 3 (1971) 1. 
E.R.A. Matulewicz, B. Scheffer and J.C. Mol, Thermochim. Acta, 67 (1983) 361. 
S.J. Gentry, N.W. Hurst and A. Jones, J. Chem. Sot., Faraday Trans. 1, 65 (1979) 1688. 
E.E. Unmuth, L.H. Schwartz, and J.B. Butt, J. Catal., 61 (1980) 242. 
P. Amoldy, O.S.L. Bruinsma and J.A. Moulijn, J. Mol. Catal., 30 (1985) 111. 
O.J. Wimmers, Doctoral Scription, Laboratorium voor Chemische Technologie, University 
of Amsterdam, 1983, unpublished. 

13 C.D. Doyle, Nature (London), 207 (1965) 290. 


