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ABSTRACT 

We present a theoretical study of an RC-model constituted only by one heat capacity and 
one coupling with the thermostat. It is assumed that the thermostat temperature varies as a 
function of time, and the heat capacity variation is due to its dependence either on 
temperature or on the mass exchange with the exterior. 

The results are parallel to the corresponding RC-models where the thermostat temperature 
is constant. The variations of sensibility are shown, as well as a criterion for the applicability 
of inverse filtering as a deconvolution technique in calorimeters with temperature program- 
ming. 

INTRODUCTION 

The deconvolution of experimental thermograms by means of numerical 
algorithms, in order to get the thermogenesis of a process, is well known as 
an application to invariant calorimeters under isothermal conditions [1,2]. 
Nowadays, inverse filtering is one of the most advantageous techniques 
because of its easy numerical application and its extension to non-invariant 
systems [3,4]. 

In this study we analyse the response of calorimeter devices with tempera- 
ture programming, bearing in mind its evolution when the sample heat 
capacity varies (non-invariant systems) [5,6]. The purpose is to obtain 
suitable sensibility expressions and to justify the appropriate use of inverse 
filtering in these devices. 
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MODEL 

With the most simple RC-model ( one capacity coupled to the thermostat) 
under isothermal conditions, the classical Tian equation is obtained. We 
have generalized this equation when the temperature of the thermostat varies 
at constant heating rate (To = T, + /3t, with p = constant). If the heat capac- 
ity is not constant (C = C(t)) we impute two reasons for this variation: (a) 
specific heat varies noticeably with temperature, or (b) a mass exchange 
exists with the surroundings. 

In Fig. 1 we show the scheme of the analysed model. 
We present the three studied cases below. 

(1) Heat capacity constant 

This case describes processes in which the mass and the specific heat do 
not vary with time or temperature. 

When a power release takes place, the balance equation is 

H.(t)=(.~+P(T-To)=C~+P(T-pf) (T,=O) 

If w( t ) equals zero, eqn. (1) yields 

7=/h--$fi[l- exp(-ft)] 

(1) 

(2) 

As is well known one should note that the temperature, T, in eqn. (2) when 
t B C/P, that is, when the baseline is established, shows a constant delay 
with regard to the thermostat temperature (Pt). 

Sensihilitj 
(a) Defined as the quotient between the total area under the thermogram 

and the total energy released. 
We assume that the thermal 

reduced to (baseline established) 

TM=@+ 

effect takes place when T in eqn. (2) is 

(3) 

Subtracting TM from T (solution of eqn. l), the response AT(t) from the 
experimental device is obtained 

AT(t)=T(t)-T,(t)=T-bt+$? (4) 

Fig. 1. Scheme of the analysed model. 



By integration of eqn. (1) between t = 0 and t = t, (initial and final instants 
from the thermal effect) and taking account of eqn. (4), we obtain for the 
sensibility, S 

J 
s= O 

"AT(t) dt 1 
=--- 

/ 
*(w(t) dt ’ 

(5) 
0 

(b) Defined as the asymptotic value of the AT signal when the power 
released inside cell is constant and equals 1 W. 

Equation (1) may be rewritten as 

T+;$+ 1 
in which, by substitution of T from eqn. (4) 

C d(AT) 
AT+pdt 1 

(6) 

(7) 

If w(t) is constant (Heaviside-like dissipation) the expression of the constant 
power release at stationary state (AT = constant) is obtained from eqn. (7) 

w=PAT (8) 

Therefore, the sensibility becomes l/P. 
Equation (7) verifies the correct utilization of inverse filtering with S = l/P 

and with the time constant 7 = C/P. The results are the same as in the 
classical case under isothermal conditions (To = constant). One should note 
that if C and P are constants and To varies linearly with time (constant 
heating rate), inverse filtering may be used. 

We point out that these results are not particular for one-body RC-models 
but common for any linear chain of capacities and couplings when a heat 
effect takes place in the first body and we detect in the last one (the 
to the thermostat). 

nearest 

(2) Heat capacity not constant (specific heat varies with temperature) 

This case describes processes where the sample specific heat varies with T, 
without mass exchange. We assume that C(t) = C?t + C,, where C and Co are 
constant. 

When a power release takes place the balance equation is 

w(t)=C(t)g+P(T-/3t) 

If w(t) = 0, eqn. (9) yields 

(-“‘) 1 Pp. t ‘8. 
p+c p+c 

(9) 
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From eqn. (lo), when the baseline is established, we can see that the sample 
heating rate is only equal to p when C = 0. That is, if C is constant, the 
temperature difference between sample and thermostat evolves linearly with 
time. 

Sensibility 
(a) Defined as the quotient 

and the total energy released. 
Supposing that the thermal 

between the total area under the thermogram 

effect takes place when the baseline is estab- 
lished, that is, when T in eqn. (10) is 

T,=A c,p 
Pf $-p+i. 

(11) 

The AT(t) signal may be obtained by subtracting TM from T (solution of 
eqn. 9) 

CoP 
AT(t)=T(t)-TM(t)=T-+$t+m 02) 

By integration of 
eqn. (12), we get 

1 
s=-.L.- 

P-C 
(13) 

(b) Defined as the asymptotic value of the AT signal when the power 

eqn. (9) between t = 0 and t = t, and taking account of 

released inside cell is constant and equals 1 W. 
Writing eqn. (9) in an equivalent expression 

C(t) dT 
T+pdt- 4 

and substituting T from eqn. (12) we obtain the inverse filtering algorithm 

c(t) 4w AT+pdt 1 (15) 

Therefore, we can apply inverse filtering, taking into account the evolution 
of the time constant (7 = C( t)/P) with the heat capacity. If w(t) corre- 
sponds to a Heaviside-like dissipation, we obtain, from eqn. (15), when the 
stationary state is reached 

w=PAT (16) 

Then the sensibility is 

07) 

Equations (13) and (17) give different expressions of S, depending on its 
definition. 



(3) Heat capacity not constant (mass exchange with the surroundings) 

We assume that C(t) = 6 + C,,, where C and CO are constants, and 
the mass exchange takes place between the exterior at temperature TO 
the sample at temperature T. In this case the balance equation is 

w(t)=C(t)g+P(T--t)+c(T-Pt) 

= C(t)g+(P+ c)(T-/It) 

=C(t)g+P’(T-pf) 
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that 
and 

(18) 

Since P + c = P’ is constant, eqn. (18) is identical to eqn. (9) if P is changed 
by P’. The results are, therefore, the same as in the above case by means of 
substitution of P by P + c. In this form, the sensibility, defined as the 
quotient between the total area under the thermogram and the total energy 
released is 

s= 1 1 
pI=F 

When a Heaviside-like dissipation takes place 

The inverse filtering is possible with 

(19) 

(21) 
and 

1 
s=- 

p+c 

TABLE 1 

Some features of the model 

S” Sb r= 

C constant l/P l/P C/P 

C = C(t) without 

mass exchange l/( P-C) l/P C(f)/P 

C = C(t) with 

mass exchange 1/p l/( P+c) C(o/(P+a 

a The sensibility defined as the quotient between the total area under the thermogram and 
the total energy released. 

b The sensibility defined as the asymptotic AT value when the power released inside the cell 
is constant and equals 1 W. 

’ The time constant. 



392 

As well as in the above case, different expressions of S can be obtained, 
depending on its definition. 

We have also analysed non-invariant multibody systems under non-iso- 
thermal conditions. Generally, we cannot obtain in these cases the expres- 
sion of the inverse filtering algorithm. 

The most outstanding features of the one-body RC-model with tempera- 
ture programming are summarized in Table 1. 

CONCLUSIONS 

The one-body RC-model under isothermal conditions (TO = constant) is 
equivalent, in terms of sensibility, to the same model with temperature 
thermostat as a linear function of time. If the model is non-invariant, the 
sensibility defined either as the quotient between the total area under the 
thermogram and the total energy released or as the asymptotic AT value 
when the power released inside the cell is constant and equal to 1 W, is 
different. 

We must use the second definition of S to deconvolute the experimental 
thermograms by means of the inverse filtering technique. We can conclude 
that the term c plays a different role when the heat capacity varies due to a 
change of specific heat or a mass exchange with the surroundings. 

Though for the one-body RC-model an inverse filtering algorithm is 
reached, we have verified that the above algorithm cannot be obtained for 
non-invariant n-body systems. 
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