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ABSTRACT 

Thermodynamic equations for the heat capacity of binary and multicomponent systems 
are given. Heat capacity changes on transition from homogeneous to heterogeneous states are 
shown to be directly connected with phase diagrams and thermodynamic properties of 
phases. Application of the relations obtained is considered. Experimental adiabatic calorime- 
try and DSC data are given for illustration. 

INTRODUCTION 

Heat capacity is a property of primary importance in chemical thermody- 
namics. However, specific heats of homogeneous systems are studied most 
often; much less attention has been given to the heat capacity of heteroge- 
neous systems. Nevertheless theoretical investigations of this property lead 
to conclusions of great significance for thermal analysis. 

Various binary and multicomponent systems containing substances of 
different classes: salts, metals, oxides, organic compounds, lyotropic and 
thermotropic liquid crystals, etc., are studied by means of thermal analysis 
methods [1,2]. For binary systems the results are most conveniently repre- 
sented in the form of phase diagrams. Many problems connected with 
determination of phase boundaries are encountered in practice [2-41. In this 
paper interpretation of DTA and DSC data for binary systems will be 
considered. Special attention will be given to the heat capacity jumps taking 
place when the number of phases present in the system is changed. 

THEORY 

Heat capacity of heterogeneous systems 

According to the phase rule an n-component r-phase materially isolated 
system has two degrees of freedom if r G n. If the pressure is fixed, the 
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system becomes monovariant. Its entropy is a sum of the entropies of the 
coexisting phases 

S= i mnsU (1) 

where S is the entropy per mole of heterogeneous system, s” is the molar 
entropy of the cx phase, and ma is the molar fraction of the (Y phase, 
C’,,lma = 1. 

The isobaric heat capacity of this system is then defined as 

C,(n; r) = T dS 
(dT)p= ‘( &jimaSa). (2) 

As the temperature varies a redistribution of components among phases 
takes place in the materially isolated system which leads to changes in 
compositions, masses and molar entropies of phases. As a result, the heat 
capacity of a heterogeneous system is in general not equal to the sum of 
specific heats of the phases in equilibrium [5]: 

where x4 is the molar concentration of component i of the (Y phase and C’F 
is the molar heat capacity of the (Y phase. 

Thermodynamic equations linking compositional changes of phases with 
the temperature variation were previously derived [6]. These equations 
allowed a general relationship to be obtained for C, of an n-component 
heterogeneous materially isolated system [5]: 

C,(n; r) = k m”CF + T i ma 
dx’ 2 

I I 
--& (4 

a=1 a=1 a 

where 

(5) 

dx’,/dT is a vector of the shift of the (Y phase composition with isobaric 
temperature variation and G, is an operator corresponding to the matrix g$ 
formed by the second derivatives of the (Y phase molar Gibbs energy with 
respect to composition. According to ref. 7, the left-hand side of eqn. (5) can 
be interpreted as the square of the norm (length) of the (dx’,/dT). vector in 
the (Y phase Gibbs potential metrics. 

From eqns. (4) and (5) the following points can be made [8]; 



67 

AC/ 

I\ 
0 c. X’ 

Fig. 1. Binary system with perfect miscibility in both phases 1 and 2: (a) phase diagram, (b) 
temperature dependence of the system’s specific heat for x = x,, (c) concentration depend- 
ence of the heat capacity jump at the transition from phase 1 to the heterogeneous state (AC; 
measured at the phase boundary ABC). 

(1) Phase transformations leading to changes in phase compositions 
increase the heat capacity of a heterogeneous system so that it exceeds the 
sum of the specific heats of the individual phases, each phase of varying 
concentration making a positive contribution to this increase. 

(2) It is only in the case of phase compositions that do not change with 
isobaric temperature variation, that the C, value of a heterogeneous system 
equals the sum of the specific heats of the coexisting phases. 

(3) On transition of the system from homogeneous to heterogeneous 
states, the heat capacity instantly increases 

(4) If the number of phases is equal to the number of components, the 
compositional changes of phases do not depend upon the ratio of their 
masses, hence, the heat capacity of the system and AC, are in this case 
linear functions of the system’s overall composition. 

In the particular case of a binary system, e.g. as shown in Fig. 1, at 
temperature T, with overall molar composition x, containing m’ moles of 
phase 1 (molar composition, x1; molar specific heat, Ci) and m2 moles of 
phase 2 (concentration, x2; specific heat, C,‘) the specific heat is given by [5] 

(7) 
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Relationship (6) for the jump in heat capacity on transition from phase 1 
to the two-phase region then reduces to 

AC;= C,(m’+ 1) - C;= Tg;, 
* > 0 

P 
(8) 

where gk,, the second derivative of the Gibbs energy of phase 1 with respect 
to composition, is positive due to the phase stability requirement. 

Heat capacity jumps 

Heat capacity jumps at the boundary between homogeneous and hetero- 
geneous states have been known [5,9,10], but an appropriate thermodynamic 
analysis is needed. Let us consider the concentration dependence of AC, for 
binary systems of various types. 

The phase diagram for completely soluble components is given in Fig. la. 
As can be seen from eqn. (8), the magnitude of the heat capacity jump, AC: 
(Fig. lb), is greatly influenced by the value of the second derivative gi,, 
which tends to infinity as x + 0 and x --j 1; at the same time the derivative 

(d+‘dT)p is finite over the entire concentration range (Fig. la). Conse- 
quently, AC, + co when x + 0 and x + 1 (Fig. lc) in accordance with the 
requirement that the heat capacity of pure components is infinite at the 
transition points. 

In Fig. 2a a phase diagram with maximum transition temperature is 
plotted. When x + 0 or x + 1 AC, behaves as in the previous case. Also, 
when an extremum point is approached, the derivative (dx’/dT), tends to 
infinity; hence, AC, tends to + cc (Fig. 2c), which is in agreement with the 

C. d 

Fig. 2. Binary system with maximum phase transition temperature: (a) phase diagram, (b) 
temperature dependence of the system’s specific heat for monovariant (x,) and invariant 
(x,) phase transitions, (c) concentration dependence of the heat capacity jump, AC: 
(measured at the phase boundary ADNF), (d) DSC curves for compositions x, and x,. 
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Fig. 3. Binary system with a simple eutectic: (a) phase diagram, (b) temperature dependence 
of the system’s specific heat for compositions x,, xI and xs, (c) concentration dependence of 

the heat capacity jump at the transition from phase 3 to the heterogeneous region (AC, 
measured at the phase boundaries FEK), (d) DSC curves for compositions x,, xf and xs. 

fact that the extremum of the transition temperature is an invariant point. 
For a binary system with a simple eutectic (Fig. 3a) the concentration 

dependence of AC; (Fig. 3c) is discontinuous at the eutectic point because 
of the intersection of two different liquidus curves. At the actual eutectic 
point a S-function-like behaviour of C, is observed. 

Figure 4 gives the phase diagram for the system with a miscibility gap, 
and the system’s heat capacity at T = T'. Regions I and II correspond to 
homogeneous states and region III represents the two-phase state. Whereas 
compositions of phases 1 and 2 change with temperature, a finite jump of C, 
of the system occurs at the phase boundary. According to eqn. (7), the heat 
capacity is a linear function of x in the heterogeneous region. For the 
isotherm T = T" the concentration dependence of C, will be the same in 
spite of the fact that the mutual solubility of phases with T = T' decreases 
and for T = T" increases with increasing temperature. This is because the 
sign of AC, is independent of the course of the phase composition change. 

Equation (8) allows us to calculate the second derivative gi, at the 

Fig. 4. Binary system with a miscibility gap: (a) phase diagram, (b) concentration dependence 
of the system’s heat capacity for the isotherm T = T’. 



70 

boundary of phase 1 if the boundary x’(T) and the heat capacity jumps AC; 
are known. If g& is independently determined from activity measurements, 
one can verify the thermodynamic consistency of the data. 

Compressibility and thermal expansion coefficients also undergo jump-like 
changes at the point of transition from homogeneous to heterogeneous 
states. Relationships for these thermodynamic properties were previously 
derived [ll]. 

Application to thermal analysis 

The thermodynamic equations obtained in the first section can readily be 
applied to thermal analysis. These equations are strictly valid only in the 
limiting case when the system is very close to equilibrium. However, as 
emphasized in ref. 2, thermodynamics give principal interpretation rules for 
the thermal analysis methods. Kinetic problems often encountered in prac- 
tice are not discussed here, readers are referred to refs. 2-4, 12 and 13. 

According to the phase rule there are two kinds of transitions in a 
materially isolated system at constant pressure. The first type is an invariant 
transition (r = n + 1) taking place at a single, precisely defined temperature 
until one phase disappears. Another type is a monovariant phase transition 
which occurs over a certain temperature interval. If r G n the number of 
degrees of freedom is independent of r. 

Interpretation of DTA data for binary systems 

An invariant process is accompanied by a finite change in enthalpy, hence 
a plateau is formed in the T-t (temperature-time) curve. For monovariant 
transitions breaks in the T-t curve are observed. 

Consider the eutectic-type binary system given in Fig. 5. Crystallization of 
pure components and the eutectic solution is represented by cooling curves 
with a single plateau. Other curves have a break (the beginning of a 

Fig. 5. Temperature-time curves for the binary system with a simple eutectic. 
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component’s crystallization) and a plateau (crystallization of eutectic solu- 
tion after one of the components partly evolves). 

Usually, breaks in a T-t curve are considered to be due to evolution of 
the solid-phase crystallization heat. Strictly speaking this is true only for 
finite changes in enthalpy, i.e. for invariant processes. However, when the 
phase processes in a materially isolated system (which is usually the case in 
thermal analysis) do not change the number of degrees of freedom, the 
molar enthalpy of the system is continuous, i.e. infinitesimal changes in 
enthalpy correspond to infinitesimal variations of temperature. It is the rate 
of enthalpy change with temperature that varies for different states of the 
system (on different sides of the phase boundary). The rate of enthalpy 
change with temperature is actually the heat capacity of the system which, as 
has been shown, undergoes a finite increase (or decrease) when the phase 
state of the system changes. 

It can be seen that the concentration dependence of AC, shown in Fig. 3 
is consistent with T-t or DTA curve changes as the composition is varied. 
Thus, when x + 0 or x + 1 the break in the T-t curve becomes sharper and 
the peak in the DTA curve increases in size. As the eutectic point is 
approached the break in the T-t curve becomes less sharp and the peak in 
DTA decreases. It is difficult to investigate the system in the vicinity of the 
eutectic point because the values of AC, are small in this region, If the 
solution of the actual eutectic composition crystallizes (AC, = oc), a plateau 
appears in the T-t curve along with a sharp peak in DTA. 

Determination of phase boundaries from DSC curves 

In differential scanning calorimetry heat flux is measured, so DSC curves 
reflect changes in the heat capacity of the system, although there is always 
some lag caused by temperature gradients or concentration fluctuations. 

The difference between invariant and monovariant processes is often not 
appreciated in the interpretation of DSC data for binary systems (e.g. for 
some lipid-water lyotropic liquid crystalline systems). Sometimes a single 
transition temperature is determined for a clearly non-isothermal process. 
As a result, the phase diagrams obtained are schematic, and contain single 
boundaries between phases instead of the heterogeneous regions required by 
the phase rule. 

The peak capacity of the system is infinite at the invariant point, whereas 
for monovariant processes heat capacity jumps, AC,, attain finite values 
(Fig. 2b). Hence, the corresponding peaks in DSC differ in shape and width 
(Fig. 2d). However, it may be difficult to detect the type of process from a 
single DSC curve. One should compare DSC data for a number of composi- 
tions and evaluate the concentration dependence of the transition tempera- 
ture. 

An invariant process in a binary system is possible, besides transitions in 
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pure components, either in the case of the transition temperature extremum 
or in the case of a three-phase equilibrium (eutectic, peritectic or incon- 
gruent melting). All the other phase processes in the system are mono- 
variant. 

The temperature dependence of C, for the eutectic-type system (Fig. 3a) 
is given in Fig. 3b. At the eutectic temperature, T,, sharp peaks are observed 
in the DSC curves for various compositions (Fig. 3d). Passage of the system 
from heterogeneous to homogeneous regions is characterized by a finite heat 
capacity jump (curves xf and xr,) which can be clearly seen in the DSC 
curves. 

Naturally, in the study of monovariant processes it is not sufficient to 
find the initial transition temperature Tl alone, we must also estimate the 
temperature interval AT = T2 - Tl (see Fig. 1). In the DSC method the 
shape and width of a peak depend upon the scanning rate and the transition 
enthalpy. There are different ways of taking thermal lag into account: either 
to determine the final transition temperature as the intersection of the 
baseline with the tangent to the right-hand side of the heating curve [14], or 
to determine peak onset and end temperatures for several scanning rates 
(< 0.5 K min -‘) and to extrapolate AT to zero scanning rate [15,16]. 
Knowing Tl and AT for a number of concentrations one can plot boundaries 
of the heterogeneous region. Examples of DSC curves for phase diagrams of 
different kinds can be also found in refs. 2 and 3. Precise location of eutectic 
and peritectic points is based upon plotting transition enthalpies versus 
composition which gives two lines intersecting at the desired point [2,14,17]. 

In spite of being the most common method used for construction of phase 
diagrams thermal analysis has its own limitations. As can be seen from eqns. 
(4)-(6), the heat capacity of a heterogeneous system ‘depends strongly upon 
the slope of phase boundaries, x”(T). Consider a phase diagram of the type 

X 
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& 

I-- d2 XK 

C 
T 

Fig. 6. Transition with nearly vertical phase boundaries: (a) fragment of the phase diagram, 
(b) temperature dependence of the system’s specific heat for composition xk, (c) DSC curve 
for x = xk_ 
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shown in Fig. 6a. It follows from eqn. (6) that in the case of nearly vertical 
phase boundaries the derivatives (dx*/dT), and, hence, the heat capacity 
jumps are small (Fig. 6b). It would be extremely difficult to detect transi- 
tions of this kind using DSC data only. (This may be the reason why it was a 
problem to locate very steep phase boundaries by means of DSC in ref. 14.) 
The equations for AC, explain the well-known fact that “the determination 
of a liquid miscibility gap or of a liquidus line with large slope is critical by 
thermal analysis, and other methods seem more appropriate” [18]. 

EXPERIMENTAL 

Measurements were carried out with the help of a Setaram DSC-111 
instrument. Samples were prepared by weight and sealed in steel cells. 
Twice-distilled water and chemically pure Na,SO, were used. DSC traces 
were recorded from 294 to 325 K with heating rates of 1, 0.5, 0.25 and 0.1 K 
mm’. For the specific heat measurements baselines with empty sample 
cells were first obtained. 

RESULTS 

Experimental data obtained by two different techniques are given here for 
illustration. 

Figure 7 gives experimental results for the system KCl-water studied by 
means of adiabatic calorimetry [20]. The error in C, is reported to be less 
than 0.1%. At temperatures below T, crystals and solution are present in the 
system. At T, = 302.5 f 0.1 K the system becomes homogeneous and an 
instant decrease in heat capacity takes place. The measured value of the heat 
capacity jump is AC, = 0.3670 rlr 0.0015 J g-’ K-‘. It is noted that the 

Q. ’ 
L 

3Lvx 20 tn 

6. 

Fig. 7. KCl-water system: (a) fragment of the phase diagram [19], x = concentration of KCI, 
weight %, (b) temperature dependence of the system’s specific heat from adiabatic calorime- 
try [20] for x = 27.1%, temperature of saturation, T, = 302.5 f 0.1 K. 
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Fig. 8. Na,SO,-water system: (a) fragment of phase diagram [19], x = concentration of 
Na,SO,, weight %, (b) temperature dependence of the system’s specific heat for composition 
x, from differential scanning calorimetry (scanning rate 0.25 K min-‘). 

process of dissolution of the crystals is very slow: it took several hours for 
the system to reach a state of thermodynamic equilibrium [20]. 

DSC is a less accurate but much faster experiment. A typical DSC curve 
for the system Na,SO,-water is given in Fig. 8. The right-hand edge of the 
DSC trace is not strictly vertical, but the tendency towards a finite decrease 
in C, is clearly seen, and this is the case for all heating rates used. The 
magnitude of the heat capacity jump at the transition from heterogeneous to 
homogeneous states is > 10 J g-l K- ‘, which far exceeds the value of AC, 
in the previous case. It can be explained by the fact that the phase boundary 
in the KCl-water system is very steep, while the slope of the solubility curve 
(dT/dx), in the system Na,SO,-water is small (see eqn. 8). 

CONCLUSIONS 

Phase processes in binary and multicomponent systems cause changes in 
the system’s heat capacity, which can be experimentally observed using 
thermal analysis methods. Values of heat capacity jumps taking place when 
the number of phase changes are directly connected with the phase diagrams 
and thermodynamic properties of the phases. Thermodynamic relations for 
C, and AC, can be useful in interpreting DTA and DSC data and in the 
construction of phase diagrams for various systems. Experimental investiga- 
tion of heat capacity allows the consistency of data to be verified, and 
auxiliary information to be obtained on the thermodynamic characteristics 
of phases and phase processes. 
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