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ABSTRACT

The heat capacity of p, p’-biphenol was measured by adiabatic calorimetry between 3 and
315 K. No anomaly in heat capacity was observed. The property is compared with that of
4.4’-difluorobiphenyl and qualitative deductions are made as to the potential hindering
molecular twisting in the crystal. A slow process was observed on the approach to thermal
equilibrium below 10 K. Thermodynamic functions derived from the measured heat capaci-
ties are tabulated.

INTRODUCTION

The crystals of the first three members of p-polyphenylene undergo phase
transitions associated with a molecular conformation change [1,2], which is
closely related to the subtle balance between intra- and intermolecular
interactions. The potential energy for the twisting motion in the isolated
state is considered as a resultant of two opposing contributions, 7-conjuga-
tion and steric repulsion. In the case of biphenyl, the stable conformation is
the twisted form in the isolated state. Experimental results, indeed, have
revealed that the biphenyl molecule is twisted by about 27 /9 rad in the
gaseous state [3,4] and by about «/6 rad in the liquid state [4-8}. On the
other hand, the molecule is planar in the crystalline state at room tempera-
ture [9-16]. When the temperature is lowered, the molecule resumes the
twisted conformation [17-19] below a phase transition at 40.4 K [20,21].
Similar phase transitions (twist transitions) have also been found in p-
terphenyl at 193.5 K [22-26] and in p-quaterphenyl at 233.0 K [26-28].
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However, their behaviour at the twist transition is very different. Biphenyl
shows a displacive-type phase transition associated with soft-modes [29-32],
while p-terphenyl and p-quaterphenyl crystals undergo an order—disorder
type of transition [25,33] at much higher temperatures compared with
biphenyl. Furthermore, the heat capacity anomalies of biphenyl [20,21] and
p-quaterphenyl [26] are very broad but that of p-terphenyl is sharper [34,35].
In a previous paper [26], we showed that it is possible to understand the
behaviours of the three compounds qualitatively by taking into account
molecular symmetry and potential curves for the twisting modes in the
isolated state.

If one introduces any substituents into the biphenyl molecule, the in-
tramolecular potential curve for the twisting motion will be affected and the
twist transition, if present, would reflect its contribution. Hence, studies on
substituted biphenyls will help to substantiate our understanding of the twist
transitions experimentally. An inspection of available data about crystal
structures of symmetrically substituted biphenyls [36] revealed that there
might be a twist transition in the crystals of two of the compounds,
4,4’-difluorobiphenyl and p, p’-biphenol (4,4’-dihydroxybiphenyl), on cool-
ing because their crystal structures were similar to that of biphenyl at room
temperature [37-40]. The search for the twist transition in crystalline 4,4’-
difluorobiphenyl was carried out by the present authors using adiabatic
calorimetry [36]. No thermal anomaly, however, was observed, and it was
deduced that the planar conformation of the 4,4’-difluorobiphenyl molecule
in the crystalline state was not the result of a statistical average but was a
fixed one. The study described in this paper is an extension of our thermo-
dynamic investigations on twist transitions in crystalline p-polyphenylenes
[20,21,26,36,41,42].

The molecular structure of p, p’-biphenol is planar in the crystalline state
at room temperature [38-40]. The crystal consists of molecular layers
parallel to the (201) plane, in which the molecules are connected to each
other by hydrogen-bonds. The structure has been analysed using X-ray
diffraction, but the hydrogen atoms have not been located. The reported
space group P2,/a is compatible with a paraelectric or antiferroelectric
order of hydrogen-bonds but incompatible with a ferroelectric order.

No reports have been published on the molecular structure of p, p’-bi-
phenol in its isolated state. Substitution with hydroxyl groups probably
lowers the potential barrier of the planar conformation owing to greater
a-conjugation compared with biphenyl. Taking into account the barrier
height in the biphenyl molecule of about 10 kJ mol~' [7,8], however, the
molecule of p, p’-biphenol will be twisted in the gaseous and liquid states.
Therefore, the twist transition in the crystal might take place at a lower
temperature. This paper describes the results of precision heat capacity
measurements and the thermodynamic properties of crystalline p, p’-biphen-
ol.
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EXPERIMENTAL

A sample of p, p’-biphenol was purchased from Tokyo Kasei Kogyo Co.,
Ltd., and purified by fractional sublimation at about 450 K in vacuum. The
mass percentages of C and H were 77.41 (caled. 77.40) and 5.41 (5.41),
respectively, for the purified sample as determined by chemical analysis. The
powdered sample was loaded into a gold-plated copper calorimeter vessel
without any further treatment, as Wallwork and Powell [38] reported that
the specimen prepared by sublimation was the same as a specimen obtained
by recrystallization from an alcohol-water solution. A small amount of
helium gas (7 kPa at room temperature) was also put into the vessel to aid
thermal equilibration within the vessel. The amount of sample used for heat
capacity measurements was 13.5333 g (0.0726776 mol) after buoyancy
correction. The sample contributed to the total heat capacity including the
vessel by 52% at 10 K, 36% at 100 K, 43% at 200 K, and 51% at 300 K. The
contribution of the helium gas in the vessel was smaller than the experimen-
tal error.

The working thermometers mounted on the vessel were a platinum
resistance thermometer (model 8164, Leeds & Northrup Co.) above 13.81 K
and a germanium resistance thermometer (model CR-1000, CryoCal Inc.)
below 14 K. Their temperature scales are based on IPTS-68, helium gas
thermometry, and the 1958 *He vapour-pressure scale [43,44]. The apparatus
and the operation of the adiabatic calorimeter are described elsewhere [45].

RESULTS AND DISCUSSION

Measurements of the heat capacities were performed between 3 and 315
K. The primary data are shown in Fig. 1 and tabulated in Table 1 in
chronological order. The temperature increment of each measurement may
be deduced from the adjacent mean temperatures. After the energy input
was over, thermal equilibrium within the calorimeter vessel was attained
within 1 min between 10 and 30 K, 7 min at 50 K, 25 min at 100 K, and 15
min above 200 K. However, below 10 K the time needed for equilibration
was abnormally long (see Fig. 4).

Some thermodynamic functions were obtained through manipulation of
the measured heat capacity values and are given at rounded temperatures in
Table 2, where the small contributions below 4 K were estimated by smooth
extrapolation of the heat capacity curve from the higher temperature side.

Figure 1 shows no recognizable anomaly. The Debye characteristic tem-
peratures corresponding to the measured heat capacities in the low tempera-
ture region are plotted in Fig. 2, because a small anomaly can, in general, be
made more prominent by such a graph. It was assumed that there were 9
degrees of freedom per molecule when we converted the heat capacities into
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Fig. 1. Measured molar heat capacities of p,p’-biphenol.

Debye temperatures. Since no anomaly is recognized in Fig. 2 either, we now
conclude that there is no phase transition in crystalline p,p’-biphenol
between 4 and 315 K. If there were any, its entropy of transition must be
smaller than about 0.005 J K~! mol~!, the value ascribed to the precision of
measurements.

A similar situation has also been found in 4,4’-difluorobiphenyl [36],
which may be rationalized from the following reasoning. First, the intramo-
lecular potential of p,p’-biphenol is expected to be similar to that of
4,4’-difluorobiphenyl. In order to confirm this, the potential curves were
estimated by using the simple Hiickel method for the contribution from the
m-delocalization and the atom-atom potential method for the contribution
from steric repulsion. The resonance integrals of C—C (hexagon bond), C-F
and C-O were 8, 0.78 and 0.88, respectively. The resonance integral of the
central C—C depended on the twisting angle  as 8 cos 8 [46]. The Coulomb
integrals of C, F and O were a, a+ 38 and a+ 28, respectively. By
comparing the result of the Hiickel method with those of experiments on
benzene, the value of 8 was derived to be —89 kJ mol™' [47]. The bond
lengths were 0.140 nm (hexagon C-C bond), 0.150 nm (central C-C bond),
and 0.110 nm (C-H bond). The parameters of atom—atom potentials of
Buckingham type (6-exp type) were taken from the literature [48]. The
atom—atom potential was summed over all atom pairs within a molecule.
The calculated potential curves are shown in Fig. 3. The barrier height and
the location of the minimum for biphenyl and 4,4’-difluorobiphenyl are in
reasonable agreement with the experimental results [3,4,7,8,49]. As is clearly
seen in Fig. 3, the intramolecular potential curves of 4,4’-difluorobiphenyl
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TABLE 2
Molar thermodynamic functions of p, p’-biphenol
T  Gn {(Ho(T) = Hy}/T  Su(T) = Sn(0)  —{Gop(T)— Ho(0))/T
K) (K 'mol™) (K 'mol™h) K 'mol™) (K 'mol™})
5 0.134 0.026 0.032 0.006
10 1.78 0.403 0.507 0.104
20 10.60 3.09 415 1.07
30 2232 7.53 10.65 3.12
40 33.66 12.68 18.65 5.98
50 43.62 17.89 27.26 9.37
60 52.24 22.92 35.99 13.08
70 59.87 27.66 44.63 16.97
80 66.93 3213 53.09 20.96
90 73.70 36.38 61.36 2499
100 80.31 40.44 69.47 29.03
110 87.03 4436 77.44 33.07
120 93.95 48.21 85.31 37.10
130 100.93 51.99 93.10 41.11
140  108.13 55.75 100.85 45.10
150 115.29 59.48 108.55 49.07
160 12237 63.19 116.22 53.03
170 129.45 66.88 123.85 56.97
180 136.32 70.54 131.44 60.90
190  143.56 74.19 139.01 64.81
200 151.03 77.85 146.56 68.71
210 158.53 81.51 154.11 72.60
220 166.03 85.19 161.66 76.47
230 173.61 88.87 169.20 80.34
240 181.02 92.55 176.75 84.20
250 188.44 96.24 184.29 88.05
260 196.02 99.93 191.83 91.90
270 203.46 103.63 199.37 95.74
280 211.09 107.33 206.90 99.58
290  218.33 111.03 214.44 103.41
300 22568 114.73 221.96 107.23
310 233.02 118.43 229.40 111.05
298.15 224.31 114.05 220.57 106.52

and p, p’-biphenol for the twisting motion show strong similarity in spite of
the different substituents. Second, the intermolecular interactions that de-
termine a planar conformation in a crystal are insensitive to atoms at the 4
and 4’ positions, because the interatomic distance between the 4(4’) position
of one molecule and the atom of the other molecule barely changes upon
twisting of the latter molecule. Thus, intermolecular interactions are similar
in the two compounds. Therefore, it is concluded that the potential hinder-
ing of the twisting has a single minimum at the planar conformation in
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Fig. 2. Debye characteristic temperatures corresponding to the measured heat capacities of
p,p’-biphenol assuming 9 degrees of freedom per molecule.

crystalline p, p’-biphenol as in the case of 4,4’-difluorobiphenyl and that the
planar conformation is not the result of a statistical average but a fixed one.
Slow thermal relaxation was encountered below 10 K. The approach of

biphenyl

4 4&-ditluorobiphenyl
10k,
mol”™

p.p’-biphenc|

| |
-n/2 0 %2
8/rad

Fig. 3. Calculated intramolecular potential curves for biphenyl, 4,4’-difluorobiphenyl [42] and
p,p’ -biphenol based on the simple Hiickel and the atom—atom potential methods.
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Fig. 4. Temperature drift under adiabatic conditions after each energy input in p, p’-biphen-
ol.

the thermometer reading to a steady drift rate is shown in Fig. 4. Since
thermal equilibrium is usually attained within a few tens of seconds in this
temperature region, it seems that there is some slow mechanism of heat flow
in the crystal. It can be considered that the crystal consists of sub-systems,
such as the lattice and the other system(s). A few minutes are needed for
heat flow between the lattice and the other sub-system(s) or for thermal
equilibration within a sub-system. It is interesting that the Debye tempera-
ture increases rapidly in this temperature region as temperature decreases.
Such a steep increase is due to large differences from the standard Debye-type
densities of states in the low frequency end of the lattice vibration. This may
be related to the properties of hydrogen-bond chains; a similar effect of slow
equilibrium was also reported in p-phenylphenol [50]. Spectroscopic investi-
gations, such as IR and NMR, will be of interest in order to clarify the
phenomenon.
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