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ABSTRACT 

Theoretical analysis of peak height IS given for traces, due to a first-order phase transition 
with substantial latent heat, obtained in classical DTA, power-compensated DSC and 
heat-flux DSC. Theoretical peak height is represented as a function of the heat capacity, the 
thermal resistance and the heating (cooling) rate on the basis of a unified model which is 
applicable to all three types of instruments. The limiting height obtained in the experiment 
with an infinite rate of heating (cooling) is independent of the amount of sample present. The 
possibility is discussed of quantitative determination of the enthalpy of transition by using 
classical DTA. 

INTRODUCTION 

Although the dynamic differential type of techniques, classical differential 
thermal analysis (DTA), power-compensated differential scanning calorime- 
try (DSC) and heat-flux DSC, have been widely used to study the thermal 
properties of materials, little attention has been paid to the evaluation of the 
peak height recorded in the trace owing to a thermal anomaly. However, it 
has been commonly suspected that the peak height due to a phase transition 
might be a practical measure of the sensitivity of the apparatus. In fact, the 
peak height increases as the heating (cooling) rate and/or the amount of the 
sample increases [1,2]. 

Recently, some efforts have been devoted to the quantitative analysis of 
the peak height [3-51. The square-root relationship of the peak height with 
the heating (cooling) rate is now well known, but the quantitative treatments 
on the effect of the amount of the sample and those on other problems have 
not yet been performed. 

In this paper, we present a detailed analysis of the peak height due to a 
first-order phase transition on the basis of the general model presented by 
Mraw [6], which is applicable to all three types of instruments. The sketch of 
Mraw’s model is reproduced in Fig. 1, where shaded regions are those with 

~40-6031/86/$03.50 @ 1986 Elsevier Science Publishers B.V. 



278 

Fig. 1. Sketch of Mraw’s model [6]. r,, temperature of the heater-block; T,,, temperature of 
the sample-temperature measuring station: T,, temperature of the sample: C,,, heat capacity 
of the sample-temperature measuring station; C,, heat capacity of the sample; R,, thermal 
resistance between the sample-temperature measuring station and the heater-block: R:. 
thermal resistance between the sample and the sample-temperature measuring station. Tr,, 

T,, Cr,. Cr, R, and R: have analogous meanings for the reference side. 

heat capacity values. The unshaded regions have no heat capacity, but offer 
thermal resistance. No temperature gradient is considered in any part of this 
system. In previous papers [7,8], the equations governing heat flow within 
the system were solved analytically. It has been shown that the temperature- 
lag of the sample can be estimated by analyzing the trace recorded in the 
experiments [7]. The theoretically rigorous drawing of the baseline is given in 
the case that the posttransition baseline is different from the pretransition 
baseline [8]. Thus, the present study is an extension of the series of our 
theoretical investigations on dynamical differential instruments. The expres- 
sion of the peak height will be given as a function of the heat capacity, the 
thermal resistance and the heating (cooling) rate. The possibility of quantita- 
tive determination of the enthalpy of transition using classical DTA will be 
also discussed. 

PEAK HEIGHT IN MRAW’S MODEL 

In this section, we describe the expression of the peak height h as a 
function of heat capacity, thermal resistance and heating (cooling) rate for 
classical DTA, power-compensated DSC and heat-flux DSC on the basis of 
Mraw’s model. The temperature of the heater-block is assumed to vary at a 
constant rate a. 

In classical DTA where R’, and R: are omitted (see Fig. l), the peak 
height due to the first-order phase transition equals aAt. Here, At is the 
time needed for the completion of the transition, and is determined by the 
equation, 

ia( + aR,C, At = R, AH (1) 
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where AH is the enthalpy of transition. The peak height h is derived as 

h = -aR,C, + (a*Rf.C: + 2aR, AH)“* (2) 

In the limit of rapid heating (cooling), i.e. a + co, the peak height ap- 
proaches the limiting value, h,,, = AH/C,. Equation (2) can be rewritten so 
that the normalized peak height is represented as a function of the dimen- 
sionless variable, y = aR &*/A H, as 

h/h max = -y + (y2 + 2y)l’* (3) 

This is the master equation of the peak height in classical DTA, which is 
shown in Fig. 2. As y increases, the normalized peak height increases 
monotonously and asymptotically approaches the limiting value. In Fig. 2, 
an approximate formula, h/h,, = (2 y)‘/*, is also shown; this is the exact 
expression of the well-known square-root dependence of the peak height on 
the heating (cooling) rate, h a al’* [5]. Thus, it is concluded that the 
square-root dependence can be considered valid in the range, y 5 10P3. 

In power-compensated DSC where R, and R, are omitted (see Fig. l), 
the peak height due to the first-order phase transition equals aAt/R’,. A 
manipulation similar to that of classical DTA gives the following expression, 

h = - aC, + (a*C: + 2a AH/R:)“* (4) 

In the limit of a + 00, the peak height approaches the limiting peak height, 
h max = AH/R’,C,. From eqn. (4) the same master equation as eqn. (3) is 
obtained, in which the dimensionless variable is y = aR’,C,*/AH. 

In heat-flux DSC, the peak height due to the first-order phase transition is 
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Fig. 2. Peak height h as a function of the heat capacity C,, the thermal resistance R: (R,), 
the enthalpy of transition AH and the heating (cooling) rate a in classical DTA and 
power-compensated DSC. y is the dimensionless variable defined as y = aR,C,2/a H in 
classical DTA and as y = aR’&*/AH in power-compensated DSC. The broken line repre- 
sents the approximate square-root relation, h/h,,, = (2~)“~. 
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expressed as 

h= {q(c.qK-L)} Mw,-~d{ W*(W2K_ L)jw”/(wLrwI) (5) 

where wi and o2 are constants determined by C,, C,,, R, and R’, [7]. In the 
limit of slow heating (cooling), i.e. a + 0, At is approximated by [2( R, + R:) 
A H/a]‘/* and h becomes proportional to a’/*. On the other hand, in the 
limit of a -+ co, At is approximated by R, A H/aR’,C, and h approaches the 
limiting value, 

In the intermediate region, the peak height increases monotonously as the 
heating (cooling) rate increases. Thus, the general features of formula (5) are 
very similar to formulae (2) and (4). However, as a number of variables are 
included in formula (5) it is impossible to obtain a simplified master 
equation. 

In all three types of instrument, as the heating (cooling) rate increases, the 
peak height increases and approaches the limiting peak height. It is note- 
worthy that the expression of the limiting peak height is given as 

h max = S AH/G 

where S is a constant. 

(7) 

In the case that the posttransition baseline is different from the pretransi- 
tion baseline, i.e. the heat capacity of the sample after the transition is 
different from that before the transition assuming a constant thermal 
resistance, the peak height must be measured from the pretransition baseline 
and the value of the heat capacity before the transition must be used. 

QUANTITATIVE TREATMENTS IN CLASSICAL DTA 

In classical DTA, the peak height due to the first-order phase transition 
increases monotonously according to eqns. (2) or (3) and approaches the 
limiting value h,,, = AH/C, as y increases; y = aR,C:/AH. As the ther- 
mal resistance R,, the heat capacity C, and the enthalpy of transition AH 
are constant, the limiting peak height h,,, does not depend on the amount 
of sample present; AH/C, = constant. The value of y depends on the 
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heating (coaling) rate a and on the amount of sample; C&/AH is propor- 
tional to the amount of sample because CJAH is constant. 

Now, it is interesting to compare two hypothetical peaks due to successive 
phase transitions with the enthalpies of transition AHi and AH,. If it is 
assumed that there is a large difference between the two values of enthalpy 
of transition, e,g. AH, = 1 and AH2 = 1000, and other values are constant, 
e.g. aRsCs2 = 1, the corresponding values of _V are 1 and 10M3, respectively. 
Substituting the two values of y into eqn. (3) yields the normalized peak 
heights as hi/h, max = 0.73 and h Jh Zmax = 0.044. Hence, actual peak heights 
are obtained as hi = 0.73/C, and h, = 44/C,. A large difference in the 
enthalpy of transition ( AH,fA H, = 103) results in a rather small difference 
in the actual peak height (h,/h, = 60). Thus, a small anomaly may be 
observed as a rather large peak. This must be the reason why extremely 
small transitions could be detected in classical DTA 191. 

As the limiting peak height ( h max = AN/C,) is independent of the amount 
of sample and of any instrumental constants, the enthalpy of transition can 
be determined in classical DTA carried out at an ultimately high heating 
(cooling) rate. The enthalpy of transition is obtained from the limiting peak 
height h,, and the heat capacity C, as AN = 12 ,,,C,. 

Instead of an experiment at the ultimate rate, several experiments can be 
done at various heating (cooling) rates on the same sample to calculate the 
limiting peak height and the parameter R,C$/AH. By fitting the data to 
eqn. (3), the enthalpy of transition is also obtainable. 

There is another possible way to estimate the enthalpy of transition, in 
which the sample is diluted with a stable and non-reactive material. The 
apparent heat capacity C,, and the apparent enthalpy of transition Air, are 
given as 

c,, = m ,C,, + m Jsd (8) 
AH,=m, AHs (9) 
where f?t, is the mass of the sample; md the mass of the difuent; C;, the heat 
capacity of the sample per unit mass; C,, the heat capacity of the diluent 
per unit mass; AH, the enthalpy of transition per unit mass. As the 
apparent value of y (~~sC~~~AH~) is much larger than that of the pure 
sample (aR,C$/AH) under the condition of rn~/~rn~ c m,) -e 1, the limit- 
ing peak height (h,,, = A.Ha/Cti) is approached more rapidly. Thus the 
enthalpy of transition is obtained as 

PEAK HEKXT IN GENERAL CASE 

Although eqn. (7) is derived on the basis of Mraw’s model, the same 
relation can be obtained in a general case according to dimensional analysis. 
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The heat flow in the system is represented by the equation of heat flow 

[10,111, 

(11) 

where c, and AH are the sample heat capacity and the enthalpy of transition 
per unit volume, respectively, X, is the thermal conductivity of the sample 
and x is the fraction of the transformed part of the sample. Here, T and x 
are functions of time t and position r; T = T( t, r) and x = x( t, r). Since 
AH/C, is only a parameter having the dimension of temperature, the limiting 
peak height, if present, should have a form of S AH/C,. The form implies 
that the limiting peak height is independent of the amount of sample. 
Therefore, it is concluded that the limiting peak height is independent of the 
amount of sample in any kind of instrument in which the heat transfer in the 
system is governed by eqn. (11). 

SUMMARY 

On the basis of a general model presented by Mraw which was applicable 
to classical DTA, power-compensated DSC and heat-flux DSC, the peak 
height was analyzed in the case of a first-order phase transition with 
substantial latent heat. Theoretical peak height was presented as a function 
of the heat capacity, the thermal resistance and the heating (cooling) rate. It 
was shown that the limiting value of experimentally attainable peak height 
was independent of the amount of sample. Three methods were proposed for 
quantitative determination of the enthalpy of transition in classical DTA. 
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