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ABSTRACT 

The authors present their results concerning the approximate dependence of the activation 
energy of CaC,O,. H,O on the conversion degree and heating rate. 

INTRODUCTION 

In our previous papers and notes [l-3] some methods have been de- 
scribed to obtain the non-isothermal kinetic parameters using several heat- 
ing rates and integration over small changes of the variables, or in short 
f--f [4]. One of the methods allowed us to prove a significant change of the 
activation energy with conversion degree for the non-isothermal dehydration 
of CaC,O, * H,O( s) and decomposition of KMnO,( s) [5]. 

This paper aims to present our results concerning the change of the 
activation energy of dehydration of CaC,O, * H,O( s), with conversion degree 
and heating rate. 

METHOD AND CALCULATION PRINCIPLES 

“Classical” non-isothermal kinetics uses the fundamental equation [6]: 

dcu A 
dT = pf(*) eeEIRT (1) 

where (Y stands for the conversion degree, T for the temperature, A for the 
pre-exponential factor, f( (Y) for the conversion function, E for the activation 
energy and R for the gas constant, with A = const, E = const and f(a) 
keeping the same form for all the values of the conversion degree. In the 
following, we shall use the same equation but in the more general form: 

da A(u) 

dT- p 
_ - f( ,y, a) e-E(U)/RT (2) 
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where u is a set of variables on which the pre-exponential factor, the 
activation energy and the conversion function could depend. In the most 
general case, 

u= (a, T, p...) (3) 

We shall consider several approximately constant heating rates /?, (, = 
1, 2, 3, . . . , h). The values /3, correspond to average values calculated for the 
whole range of values. Taking into account that PI (I= 1, 2, 3,. . . , h) values 
are not rigorously constant, some local heating rates PIrk (I = 1, 2, 3,. . . , h) 
corresponding to the closed interval cr E [cx,, CQ] should be introduced. 

The following notations will be introduced for the isoconversion tempera- 
tures and times: 

T,, > T2,, . . . t T,, 
ff=Cl 

’ fl,, t2,r...rtr, 

The local heating rates can be calculated from the formula: 

Plrk = 
Tlk - T,, 

tlk - Ii, 

(4) 

Integration of the differential equation (2) over the interval (Y E [(Y,, (~~1 for 
two heating rates & and BY gives: 

(6) 

The difficulty in solving the integrals from eqns. (5) and (6) arises because 
the analytical dependences A(u), f( u, a) and E(u) are unknown. 

In order to solve this problem we should use for the moment a first rough 
approximation by substituting in the integrals from (5) and (6) the functions 
A(u), f( u, (Y) and E(u) with some average constant values corresponding to 
an average conversion degree given by 

a, + ah (y=- 
2 

(7) 

as Well as t0 an average heating rate &,,& given by: 

P 
&rk + &k 

xyrk = 2 
(8) 

with x <y. 
For the interval: 

AM,~ = ffk - (Y, (9) 
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we recommend such values that the condition: 

AQ I 0.3-0.4 

is fulfilled. 
Thus, according to our first approximation 

A(u) %4(u) -A (IO) 

f(u, a) + f(E, Cx) = f(cX) (II) 

E(v) + E(C) = E (12) 

keeping in mind that without considering identical notations the right-hand 
side values are average values and should not be confused with those from 
eqn. (1). 

Taking into account (lo), (11) and (12), from (5) and (6) it turns out that: 

J 
ah da A T,, -=- 

J a, f(a) &zk T,, 

e-E/RT dT 

J 

a~ dcu A T,, -=- 
J a, f(a) &rk T,, 

e-E/RTdT 

(13) 

(14) 

Thus the first rough approximation led to results which are equivalent to 
those obtained by applying the classical model. As far as the interpretation 
is concerned our nonclassical model shows that E = E( a, j3). The same 
dependence is exhibited by the classical model, thus showing its incon- 
sistency. 

Using the results obtained in the first rough approximation, by applying 
the nonclassical model, a second approximation can be obtained. 

From (13) and (14) one gets: 

JT,, 
a relationship which allows 
ing on the approximations 

evaluation of the activation energy E. Depend- 
used to solve the temperature integral we get 

_ 
various formulae to evaluate B. 

A good approximation uses the average theorem to solve the temperature 
integral [7,8]. In this case one gets the following formula: 

(15) 

qrkTyrk 

E = R Tvlk - Tx,k 

*x, - *x7 

In* yk - *,, 
(16) 

with 

qk+cr 
Tx,k = , 

Ty,k = 

Tyk + 51 

2 

(17) 
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A very good approximation for the temperature integral can be obtained by 
using Simpson’s formula for n = 2 [8,9]. Introducing this approximation in 
(15) it turns out that, 

( Tvx- - ~.,/6)(e-E’Rq, + 4e-E’RT,A + e-E’RTA) Pvrk 
=- 

(T,,, - 7",/6)(e-E/RT~~ + 4e-E'RT~~h + e-E/RTth) &,I, 

or taking into account relationship (4). 

eeE/RT,, + 4e-E/RT,,, + e-WRT,, t,, - t.1, 
e-E/Rr,, + 4e-E/Rr,,, + e-WRT,~ = t)+ - I,., 

(18) 

(19) 

The differences r,, - TX, and T,., - T,., should not be higher than 15-20 K 
or lower than 4-5 K. 

Although the errors concerning the values of the determined activation 
energy are beyond the aim of this article, one should emphasize that: 
(a) the errors due to the mathematical approximations are not essential: 
(b) the errors due to the inaccuracy of the measurements of the variables are 

quite significant, the most dangerous being the inaccurate determination 
of the temperature. 

As an example let us consider formula (16) and suppose that the dif- 
ference T,,,k - TXlli was erroneously evaluated with AT. The relative error of 
the difference TJII, - TYrkr e,, is given by: 

were AT can be either positive or negative. 

For TV& - TXrk = 6 K and AT= 1 K 

e, = f X 100 = 14.3% 

thus a significant error. 
Formula (20) shows that e,, and correspondingly the error in the evalua- 

tion of the activation energy, decreases with the increase of the difference 

T”Ik - TX&. This is why the results obtained for close /$ and & (to which 
correspond small values of the difference Tylk - Txrk) should be carefully 
considered. 

APPLICATIONS 

The method was applied for the dehydration of CaC,O, + H,O using four 
heating rates: & = 0.987 K mini, & = 2.353 K mini, & = 4.988 K 
mini, & = 9.573 K min-‘. The thermogravimetric curves have been re- 
corded with a Du Pont 1090 thermal analyser. 

The experimental data are listed in Table 1. 
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TABLE 1 

Experimental data for the dehydration of CaCzO,.H,O(s) 

No. (Y & = 0.987 PI = 2.353 & = 4.988 & = 9.573 
K min-’ K min-’ K mln-’ K min-’ 

T (K) t (min) T (K) t (min) T(K) r (min) T (K) t (min) 

1 0.10 412.2 119.95 420.9 27.02 425.3 26.40 430.8 13.96 
2 0.20 418.4 126.30 428.1 30.14 434.0 28.27 441.1 15.02 
3 0.30 422.8 130.60 433.1 32.30 440.2 29.54 447.6 15.76 
4 0.40 426.2 134.00 437.2 34.04 445.3 30.58 453.2 16.35 
5 0.50 429.2 137.10 441 .o 35.58 449.2 31.46 458.0 16.87 
6 0.60 431.9 139.65 443.8 36.92 453.1 32.21 462.4 17.31 
7 0.70 434.0 142.05 446.6 38.18 456.8 32.92 466.2 17.75 
8 0.80 436.2 144.55 449.6 39.36 460.5 33.63 470.6 18.18 
9 0.90 439.0 147.10 452.9 40.62 465.1 34.38 475.6 18.64 

In Table 2 the local heating rates Plrk (I = 1. 2, 3, 4) for several intervals 
(Y E [al, ak] are given. The results of the calculations using formulae (16) 
and (19) as well as the values e,,.,, for various combinations between x and 
y (xzy; x<I’; x, y=l,2,3,4) are listed in Tables 3-8. The calculated 
values of the activation energy using formula (16) have been noted by E’ 
and those calculated with formula (19) have been noted by E. From Tables 

TABLE 2 

Local heating rates P,,r (I = 1, 2, 3,4) for pairs OL,, (Ye 

No. a, ak a 

1 0.10 0.20 0.15 
2 0.10 0.30 0.20 
3 0.20 0.30 0.25 
4 0.20 0.40 0.30 
5 0.20 0.50 0.35 
6 0.30 0.40 0.35 
7 0.30 0.50 0.40 
8 0.30 0.60 0.45 
9 0.30 0.70 0.50 

10 0.40 0.60 0.50 
11 0.40 0.70 0.55 
12 0.40 0.80 0.60 
13 0.50 0.70 0.60 
14 0.50 0.80 0.65 
15 0.50 0.90 0.70 
16 0.60 0.80 0.70 
17 0.60 0.90 0.75 
18 0.70 0.90 0.80 

P lrh P Zlh P 3rh P 4th 

(K min-‘) (K min-‘) (K min-‘) (K min-‘) 

0.976 2.308 4.652 9.717 
0.995 2.311 4.745 9.333 
1.023 2.315 4.882 8.784 
1.013 2.333 4.892 9.098 
1 .ooo 2.371 4.765 9.135 
1.000 2.356 4.904 9.492 
0.985 2.409 4.688 9.369 
1.006 2.316 4.832 9.584 
0.978 2.296 4.911 9.347 
1.009 2.292 4.785 9.583 
0.969 2.271 4.915 9.286 
0.948 2.331 4.984 9.508 
0.970 2.154 5.206 9.318 
0.940 2.275 5.207 9.618 
0.980 2.361 5.445 9.944 
0.878 2.377 5.211 9.425 
0.953 2.460 5.530 9.925 
0.990 2.582 5.685 10.562 
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TABLE 3 

E’ and E values for x = 1 and y = 2 

No. (Y, ah a E’ (kcal mol-‘) E (kcal mol-‘) PIZlk (K min-‘) 

1 0.10 0.20 0.15 27.06 26.98 1.642 
2 0.10 0.30 0.20 26.16 25.97 1.653 
3 0.20 0.30 0.25 24.78 24.75 1.669 
4 0.20 0.40 0.30 23.86 23.78 1.673 
5 0.20 0.50 0.35 23.34 23.16 1.686 
6 0.30 0.50 0.40 22.90 22.82 1.697 
I 0.30 0.60 0.45 22.55 22.45 1.661 
8 0.30 0.70 0.50 21.79 21.63 1.637 
9 0.40 0.60 0.50 22.10 22.07 1.651 

10 0.40 0.70 0.55 21.28 21.21 1.620 
11 0.40 0.80 0.60 21.32 21.17 1.640 
12 0.50 0.70 0.60 20.09 20.07 1.562 
13 0.50 0.80 0.65 20.62 20.56 1.608 
14 0.50 0.90 0.70 20.56 20.46 1.671 
15 0.60 0.90 0.75 21.05 20.97 1.707 
16 0.70 0.90 0.80 21.41 21.38 1.786 

3-8 one can conclude that the values E' and E are very close, most of the 
differences not exceeding 0.05-0.50 kcal mol-‘. Thus formula (16) leads to 
correct results, as the errors with respect to the exact value of E calculated 
according to formula (19) are exceptionally higher than 3%, most of them 
being 0.05-1.5%. 

TABLE 4 

E’ and E values for x = 1 and y = 3 

No. a, &k a E’ (kcal mol-‘) E (kcal molt ‘) hrlr (K min-‘) 

1 0.10 0.20 0.15 30.20 30.00 2.814 
2 0.10 0.30 0.20 28.75 28.27 2.870 
3 0.20 0.30 0.25 27.00 26.93 2.953 
4 0.20 0.40 0.30 25.60 25.40 2.953 
5 0.20 0.50 0.35 25.48 25.16 2.883 
6 0.30 0.50 0.40 24.55 24.45 2.837 
7 0.30 0.60 0.45 23.99 23.80 2.919 
8 0.30 0.70 0.50 23.17 22.88 2.945 
9 0.40 0.60 0.50 23.62 23.57 2.897 

10 0.40 0.70 0.55 22.73 22.61 2.942 
11 0.40 0.80 0.60 22.19 21.98 2.966 
12 0.50 0.70 0.60 22.16 22.11 3.088 
13 0.50 0.80 0.65 21.78 21.65 3.074 
14 0.50 0.90 0.70 21.06 20.84 3.213 
15 0.60 0.90 0.75 20.72 20.59 3.242 
16 0.70 0.90 0.80 20.29 20.24 3.338 
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TABLE 5 

E’and E valuesforx=l and y=4 

No. (Y, ak a E’ (kcal mol-‘) E (kcal mol-‘) hrk W min-‘) 

1 0.10 0.20 0.15 31.19 30.92 5.347 
2 0.10 0.30 0.20 29.85 29.30 5.164 
3 0.20 0.30 0.25 27.52 27.46 4.904 
4 0.20 0.40 0.30 26.51 26.34 5.056 
5 0.20 0.50 0.35 25.94 25.62 5.068 
6 0.30 0.50 0.40 25.28 25.16 5.177 
7 0.30 0.60 0.45 24.66 24.44 5.277 
8 0.40 0.60 0.50 24.06 23.88 5.296 
9 0.40 0.70 0.55 23.22 23.08 5.128 

10 0.40 0.80 0.60 22.58 22.35 5.228 
11 0.50 0.70 0.60 22.44 22.39 5.144 
12 0.50 0.80 0.65 21.96 21.84 5.279 
13 0.50 0.90 0.70 21.32 21.12 5.462 
14 0.60 0.80 0.70 21.43 21.38 5.152 
15 0.60 0.90 0.75 20.84 20.73 5.439 
16 0.70 0.90 0.80 20.61 20.56 5.776 

Besides, one notices that when working with two pairs of values (Y,~, (Ye, 
and Q. (Ye, such as: 

a,1 + akl a,2 + ak2 
(Y= = 

2 2 (21) 

TABLE 6 

E’ and E values for x = 2 and y = 3 

No. (Y, &k (Y E’ (kcal mol-‘) E (kcal mol-‘) &3,k (K min-‘) 

1 0.10 0.20 0.15 36.02 35.47 3.480 
2 0.10 0.30 0.20 33.19 32.00 3.528 
3 0.20 0.30 0.25 30.56 30.39 3.599 
4 0.20 0.40 0.30 28.28 27.84 3.613 
5 0.20 0.50 0.35 28.87 28.27 3.568 
6 0.30 0.50 0.40 27.03 26.91 3.549 
7 0.30 0.60 0.45 26.02 25.69 3.574 
8 0.30 0.70 0.50 25.09 24.58 3.604 
9 0.40 0.60 0.50 25.72 25.63 3.539 

10 0.40 0.70 0.55 24.70 24.47 3.593 
11 0.40 0.80 0.60 23.37 23.04 3.658 
12 0.50 0.70 0.60 25.06 24.91 3.680 
13 0.50 0.80 0.65 23.39 23.15 3.741 
14 0.50 0.90 0.70 21.73 21.34 3.903 
15 0.60 0.80 0.70 21.73 21.66 3.794 
16 0.60 0.90 0.75 20.30 20.13 3.995 
17 0.70 0.90 0.80 18.89 18.82 4.134 
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TABLE 7 

E’ and E values for .Y = 2 and y = 4 

No. a, ak a E' (kcal mol-‘) E (kcal mol - 1 ) P24,A W min - ’ ) 

1 0.10 0.20 0.15 34.67 34.17 6.013 
2 0.10 0.30 0.20 32.87 31.92 5.822 
3 0.20 0.30 0.25 29.62 29.53 5.550 
4 0.20 0.40 0.30 28.52 28.25 5.716 
5 0.20 0.50 0.35 27.91 27.47 5.753 
6 0.30 0.50 0.40 27.05 26.90 5.889 
7 0.30 0.60 0.45 26.16 25.85 5.932 
8 0.40 0.60 0.50 25.46 25.33 5.938 
9 0.40 0.70 0.55 24.59 24.39 5.779 

10 0.40 0.80 0.60 23.47 23.17 5.920 
11 0.50 0.70 0.60 24.12 24.04 5.736 
12 0.50 0.80 0.65 22.91 22.75 5.947 
13 0.50 0.90 0.70 21.85 21.58 6.153 
14 0.60 0.80 0.70 21.57 21.51 5.901 
15 0.60 0.90 0.75 20.70 20.58 6.193 
16 0.70 0.90 0.80 20.07 20.00 6.572 

the E values calculated for the two intervals are in good agreement in most 
cases. If (21) is valid the values of E’, E and &,,ik will be considered as 
averaged for the two cases. 

TABLE 8 

E' and E values for .Y = 3 and y = 4 

No. a, ak a E' (kcal mol-‘) E (kcal mol- ‘) ,J& (K min..‘) 

1 0.10 0.20 0.15 33.54 33.08 7.185 
2 0.10 0.30 0.20 32.58 31.85 7.039 
3 0.20 0.30 0.25 28.75 28.74 6.833 
4 0.20 0.40 0.30 28.75 28.65 6.995 
5 0.20 0.50 0.35 27.03 26.72 6.950 
6 0.30 0.40 0.35 29.36 29.32 7.198 
7 0.30 0.50 0.40 27.07 26.89 7.029 
8 0.30 0.60 0.45 26.30 26.01 7.190 
9 0.40 0.60 0.50 25.15 25.03 7.184 

10 0.40 0.70 0.55 24.47 24.31 7.101 
11 0.40 0.80 0.60 23.59 23.31 7.246 
12 0.50 0.70 0.60 23.14 23.12 7.262 
13 0.50 0.80 0.65 22.41 22.32 7.413 
14 0.50 0.90 0.70 22.00 21.85 7.695 
15 0.60 0.80 0.70 21.38 21.36 7.318 
16 0.60 0.90 0.75 21.16 21.09 7.728 
17 0.70 0.90 0.80 21.46 21.40 8.124 
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DISCUSSION: AN APPROXIMATE DEPENDENCE E = E( a. fl) 

To find an approximate dependence E = E( (Y, p) we shall start with 
(Y = ct, and study how the values of E calculated with formula (19) depend 
on p, i.e. the dependence E = E(P). The next step is to establish the 
dependence E = E(a) for an approximately constant p,, (x, y = 1, 2. 3, 4) 

with P,, = (& + 4,.)/2 for x <J. 
Before giving the solution of our problem, we take the liberty of removing 

the unreliable pairs of data (as for example the combination _Y = 2, _r = 3, 
due to the fact that & and & are quite close). 

To consider the dependence E = E( /I) for CY = ct, in a first approximation 
we shall admit that with the exception of one point (E, /3,,,,) or (E, &Z,k) 
the remaining points lie on a straight line. The results obtained using the 
least-squares method [lo] as well as &,.,, values for which the pair of data 
(E, p) is removed as statistically unreliable, are listed in Table 9. As seen 
from these data, in a first approximation E depends linearly on ,l3, i.e. 

(Y = ct E = a, + b,P (22) 

A linear dependence can be obtained for E = E(a) too, when /3,,. = ct 

(x,y = 1, 2, 3, 4). The results using the linear regression method are given in 
Table 10. There are no pairs of data to be removed as statistically unreliable. 
The linearity E(a) is better than the linearity E( j3). This statement is 
supported by the values of the correlation coefficients. Thus, for p = ct 

E = a, + b,a (23) 

TABLE 9 

Constants a, and b, of the linear dependence E( /3) 

No. a 'V? a, (kcal mol-‘) b, (kcal mol-’ K-’ mm) p,,,I for which 
the point is 
removed 

1 0.15 0.9083 25.93 1.11 

2 0.20 0.9504 24.56 1.09 ;I::: 
3 0.25 0.8992 23.97 0.80 

4 0.30 0.9692 22.40 0.91 :I::: 

5 0.35 0.9537 22.07 0.85 6 0.40 0.9530 21.86 0.75 ;I::: 

7 o.J.5 0.9606 21.61 0.63 8 0.50 0.9390 21.17 0.59 ;:::: 
9 0.55 0.9444 20.58 0.56 23th 

10 0.60 0.9068 20.23 0.47 :I,,, 

11 0.65 0.8754 20.37 0.31 
23rk 

12 0.70 0.9823 20.16 0.21 ; 23rk 

13 0.75 0.7427 19.86 0.15 l2lh 

14 0.80 0.6740 18.36 0.33 12,k 

a r,, is the correlation coefficient. 
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TABLE 10 

Constants u, and h, of the linear dependence E(a) 

No. P,, W mln-‘) az (kcal mol-‘) b, (kcal mol-‘) 

1 ,L3,: = 1.670 -0.9155 26.96 - 9.10 
2 &3 = 2.987 - 0.9754 30.50 - 13.81 
3 & = 3.670 - 0.9762 36.20 -21.50 
4 plj = 5.280 - 0.9777 31.58 - 14.92 
5 &,, = 5.960 - 0.9835 35.20 - 19.63 
6 & = 7.281 - 0.9808 34.45 - 18.05 

Taking in (22) the derivative of E with respect to /3 it turns out that 

(24) 

Taking into account that for every value of (Y one gets a particular value of 
dE/i@ = b,, one concludes that i3E/i3p should depend on (Y, i.e. 

aE -= c(a) = b,(a) w 33 
As seen from Fig. 1 the plot of ClE/ap against (Y is a straight line, whose 
parameters, obtained using the least-squares method, are given in Table 11. 
Thus. 

Now taking in (23) the derivative of E with respect to (Y, one gets: 

aE 
-1 

aa + =bAP) 

A 

: 11. 

7 
Y lo- 

7 
z 0.9. 

t 
0.8 - 

2 Y 0.7 r 

2 0.6. 

co’i) 7 w 6 OS- 

04. 

0.3 - 

0.2 - 

0.1 - 

w 
0.2 0.4 0.6 0.8 c( 1.0 

Fig. 1. The dependence [(aE/ap), a], 
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TABLE 11 

The constants u3 and b, of the linear dependence (26) 

No. ‘*, a3 (kcal mol-’ K-’ min) b, (kcal mol-’ K-’ min) (Y for which 

points are 
removed 

1 - 0.9940 1.4023 - 1.6425 0.25 
0.80 

where 

p = p,, = !-+s (28) 
As shown in Fig. 2, the plot [(aE/acu), p] is quite linear with the exception 
of one point (b2, &) which lies far away from the straight line. The 
parameters of the straight line obtained using the least-squares method are 
listed in Table 12. Thus in a first approximation, 

aE 
- = a4 + bJ3 
aff (29) 

In order to obtain the dependence E = E( a, /?) through integration of the 
differential equations (26) and (29) one gets the following two particular 
solutions: 

E, = a’ + b’/? + crap (30) 
E, = a” + b’p + c”ap (31) 

-9- 

-10 _ 

^ -11. 
-7 
5 E -12- 

ti -13. 

," 
_ -14- 

g: 7 

-15. 

-16- 

-17. 

-18. 

-19. 

-20. 

-21. 

1 

b(K min-’ ) 
1 23456769 

Fig. 2. The dependence [(CIE/CIcr), /3]. 
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TABLE 12 

Constants a4 and b4 of the linear dependence (29) 

No. rx , a4 (kcal mol-‘) b4 (kcal mol-’ K-’ min) &,, for which 
points are removed 

1 - 0.9034 - 7.5686 - 1.6251 P 72 

where a’, b’, c’, a”, b”, c” are constants. A general solution can be 
obtained as a linear combination of E, and E,. 

Eta, P) = C,E,h P) + GE&, P> (32) 

01: taking into account (30) and (31), 

E((Y, ,8) = E, + E,cu + E2/3 + E&3 (33) 

where E,, E,, E, and E, are real constants. 
To confirm our results, the derivatives of relationships (26) and (29) with 

respect to cu and p, respectively, should be considered. One gets: 

d2E -zx 
act ap b3 

a2E -= 
ap aa ‘4 

(34) 

(35) 

As the two variable functions E(cu, 6) fulfil the conditions of Schwarz’s 
theorem [ll], it follows that: 

a=E a=E =- 
aa ap ap aa (36) 

or 

b, = b4 

Our results are in fair agreement with (37), as 

b, = - 1.6425 kcal mol-’ K-’ min 

and 

(37) 

b4 = -1.6251 kcal mol-’ K-’ min 

SUGGESTION FOR A NEW EQUATION IN NON-ISOTHERMAL KINETICS 

If one supposes that: 

In A =a+bE 

then for E given by (33) it follows that: 

(38) 

(39) 
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where A,, E,f, E; and E; are real constants. Taking into account relation- 
ships (33) and (39) from eqn. (2) one gets: 

da 
- &f(o, CY) eEfa 

dT- ,!3 
eW eE;aP e-W’RT ,-E,a/RT e-E,fl/RT e-E,a&‘RT (40) 

which is the equation we have been looking for. 

CONCLUSIONS 

The experimental data and the method of working them, presented in this 
paper, should be considered as an illustration of an idea which has penetrated 
non-isothermal kinetics according to which the non-isothermal kinetic 
parameters are, to a certain extent, influenced by the experimental condi- 
tions [12]. 
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