Note

EXCESS MOLAR VOLUMES OF TRICHLOROETHYLENE WITH CYCLOHEXANONE, METHYLISOBUTYLKETONE, AND 1,4-DIOXANE AT 308.15 AND 318.15 K

K. SUBRAMANYAM REDDY

Department of Chemistry, Sri Venkateswara University, Tirupati-517 502 (India)

D.V.S. JAIN

Department of Chemistry, Panyab University, Chandigarh-160 014 (India) (Received 4 April 1986)

As part of a study of thermodynamic properties of binary liquid mixtures involving complex formation [1-3], we report in this paper excess molar volumes for trichloroethylene + cyclohexanone, + methylisobutylketone, and +1.4-dioxane, measured at 308.15 and 318.15 K.

EXPERIMENTAL

Methylisobutylketone (B.D.H.) was purified by the method described earlier [4], trichloroethylene (B.D.H.), cyclohexanone (B.D.H.), and 1,4-dioxane (B.D.H.) were purified by the standard methods described in the literature [5]. The purity of the chemicals was ascertained by comparing the measured density and refractive index data with the literature values [6].

Excess molar volumes were measured using the continuous-dilution dilatometer of Dickinson et al. The procedure for filling and use of the dilatometer [7], and the calibration of the capillaries and glass tube used in the fabrication of the dilatometer [7,8], were described earlier. $V_{\rm m}^{\rm E}$ values were accurate to $\pm 0.002~{\rm cm}^3~{\rm mol}^{-1}$.

RESULTS AND DISCUSSION

Excess molar volumes for the three binary mixtures measured at 308.15 and 318.15 K are reported in Table 1 and plotted in Fig. 1. The composition dependence of excess molar volumes are represented by an equation of the type:

$$V_{\rm m}^{\rm E}({\rm cm}^3 {\rm mol}^{-1}) = x(1-x)\sum_{i=0}^3 v_i(1-2x)^i$$
 (1)

TABLE 1 Experimental excess molar volumes

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	δV _m ^E (cm ³ mol ⁻¹) -0.001 0.002 0.005 0.004 0.000 -0.005 -0.005 -0.005 -0.005 0.006 -0.007 0.005 0.001 0.002
x Trichloroethylene + $(1-x)$ cyclohexanone 308.15 0.0882	0.002 0.005 0.004 0.000 -0.005 -0.005 -0.003 0.006 -0.007 0.005 0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.002 0.005 0.004 0.000 -0.005 -0.005 -0.003 0.006 -0.007 0.005 0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.002 0.005 0.004 0.000 -0.005 -0.005 -0.003 0.006 -0.007 0.005 0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.004 0.000 -0.005 -0.005 -0.003 0.006 -0.007 0.005 0.001
$egin{array}{cccccccccccccccccccccccccccccccccccc$	0.000 -0.005 -0.005 -0.003 0.006 -0.007 0.005 0.001
$\begin{array}{ccccccc} 0.2311 & -0.066 & -0.001 & 0.7264 & -0.178 \\ 0.2618 & -0.075 & -0.001 & 0.7786 & -0.169 \end{array}$	-0.005 -0.005 -0.003 0.006 -0.007 0.005 0.001
0.2618 -0.075 -0.001 0.7786 -0.169	-0.005 -0.003 0.006 -0.007 0.005 0.001
0.2618 -0.075 -0.001 0.7786 -0.169	-0.003 0.006 -0.007 0.005 0.001
0.2975 -0.085 -0.001 0.8319 -0.148	0.006 -0.007 0.005 0.001
0.2773 0.003 0.001 0.0317 0.140	-0.007 0.005 0.001
0.3455 -0.101 -0.002 0.9270 -0.076	0.005 0.001
0.3849 -0.112 -0.001	0.005 0.001
$318.15 0.1305 -0.061 \qquad \qquad 0.000 \qquad \qquad 0.4783 -0.201$	0.001
0.1521 -0.072 -0.002 0.5194 -0.202	
0.1843 -0.085 -0.003 0.6111 -0.228	0.002
0.2172 -0.091 -0.004 0.6607 -0.231	0.002
$0.2401 -0.102 \qquad 0.002 \qquad 0.7606 -0.223$	-0.003
$0.3016 -0.125 \qquad 0.002 \qquad 0.8492 -0.182$	-0.006
0.3730 -0.159 -0.004 0.8907 -0.132	0.007
0.4233 - 0.171 0.003	
x Trichloroethylene $+(1-x)$ methylisobutylketone	
308.15 0.1435 -0.052 -0.004 0.4331 -0.157	-0.004
0.1867 -0.071 -0.003 0.4942 -0.172	-0.005
$0.2334 -0.086 \qquad \qquad 0.002 \qquad \qquad 0.5594 -0.183$	-0.004
0.2549 - 0.093 0.004 $0.6262 - 0.191$	-0.001
$0.2695 -0.099 \qquad 0.004 \qquad 0.6581 -0.194$	0.001
$0.3059 -0.113 \qquad 0.004 \qquad 0.7243 -0.196$	0.005
$0.3784 -0.138 \qquad 0.001 \qquad 0.8206 -0.187$	0.005
$0.4137 -0.148 \qquad 0.001 \qquad 0.8974 -0.157$	-0.007
318.15 0.1042 -0.062 -0.002 0.4655 -0.209	-0.002
0.1777 - 0.105 - 0.005 0.5386 - 0.223	-0.006
$0.2057 -0.112 \qquad \qquad 0.002 \qquad \qquad 0.6510 -0.211$	0.004
$0.2486 -0.134 \qquad \qquad 0.000 \qquad \qquad 0.7208 -0.198$	0.002
$0.2653 -0.139 \qquad 0.003 \qquad 0.7792 -0.178$	0.000
$0.2959 -0.151 \qquad 0.004 \qquad 0.8189 -0.158$	0.000
$0.3371 -0.169 \qquad 0.001 \qquad 0.8665 -0.124$	0.004
0.4006 -0.192 -0.001 0.9184 -0.092	-0.006
x Trichloroethylene + $(1-x)$ 1,4-dioxane	
308.15 0.1093 0.026 -0.003 0.5889 0.027	-0.002
0.1854 0.041 -0.003 0.6286 0.017	-0.001
0.2303	0.006
0.2618 0.057 0.002 0.7229 -0.013	0.001
0.3202	0.002

TABLE 1 (continued)

T	x	$V_{ m m}^{ m E}$	$\delta V_{ m m}^{ m E}$	X	$V_{\rm m}^{\rm E}$	$\delta V_{\rm m}^{\rm E}$
(K)		$(cm^3 mol^{-1})$	$(cm^3 mol^{-1})$		$(cm^3 mol^{-1})$	$(cm^3 mol^{-1})$
	0.3896	0.061	0.001	0.8222	-0.042	-0.001
	0.4197	0.056	-0.003	0.8669	-0.048	-0.001
	0.4869	0.048	-0.003	0.8958	-0.048	-0.002
	0.5526	0.036	-0.002	0.9249	-0.041	-0.001
318.15	0.1088	0.026	0.000	0.5042	-0.020	0.001
	0.1304	0.029	0.000	0.5527	-0.032	-0.001
	0.1595	0.030	-0.001	0.6335	-0.045	0.002
	0.2040	0.031	0.000	0.7003	-0.054	0.001
	0.2415	0.029	0.000	0.7541	-0.059	-0.002
	0.2861	0.025	0.001	0.7849	-0.058	-0.001
	0.3456	0.014	-0.001	0.8381	-0.052	0.000
	0.3667	0.013	0.002	0.9125	-0.034	0.001
	0.4587	-0.012	-0.002			

where x is the mole fraction of trichloroethylene. The values of the parameters v_i are obtained by the method of least squares and are given in Table 2, along with the standard deviations $\sigma(V_m^E)$. The difference between experimental V_m^E and that obtained on the basis of eqn. (1), for the same mole fraction, are given in Table 1 as δV_m^E .

Fig. 1. Excess molar volumes: x trichloroethylene + (1-x) cyclohexanone at (\square) 308.15 K, (\blacksquare) 318.15 K; x trichloroethylene + (1-x) methylisobutylketone at (\triangle) 308.15 K, (\blacktriangle) 318.15 K; and x trichloroethylene + (1-x) 1,4-dioxane at (\bigcirc) 308.15 K, (\blacksquare) 318.15 K.

TABLE 2	
The least-square parameters and standard deviation of	$V_{\rm m}^{\rm E}$

x Trichloroethylene+	<i>T</i> (K)	v_0	v_1	v_2	v_3	$ \frac{\sigma(V_{\rm m}^{\rm E})}{({\rm cm}^3~{\rm mol}^{-1})} $
(1-x) Cyclohexanone	308.15	-0.5788	-0.5317	-0.2471	0.0044	0.003
	318.15	-0.8069	-0.6491	-0.2993	0.1238	0.005
(1-x) Methyliso-	308.15	-0.6711	-0.3982	-0.4849	-0.6770	0.004
butylketone	318.15	-0.8510	-0.2877	-0.0625	-0.0284	0.003
(1-x) 1,4-Dioxane	308.15	0.1973	-0.3394	-0.4626	-0.2567	0.003
•	318.15	-0.0780	-0.4671	0.0003	0.0386	0.001

Excess molar volumes are negative in the mixtures of trichloroethylene + cyclohexanone, and + methylisobutylketone, over the whole composition range, at both temperatures. $V_{\rm m}^{\rm E}$ values are skewed towards higher x values in the two systems. In the system of trichloroethylene + 1,4-dioxane, $V_{\rm m}^{\rm E}$ values change sign from positive to negative with increase in x. The change in sign of $V_{\rm m}^{\rm E}$ is observed at $x \approx 0.7$ and 0.4, at 308.15 and 318.15 K, respectively. Negative $V_{\rm m}^{\rm E}$ may be attributed to the presence of strong dipolar interactions and is probably due to formation of hydrogen bonds between unlike molecules. Positive $V_{\rm m}^{\rm E}$ values, in the lower range of x for the trichloroethylene + 1,4-dioxane, may be due to the existance of weak dipolar interactions between unlike molecules. The magnitude of the observed $V_{\rm m}^{\rm E}$ in the three systems, is in order with the polarizabilities of the non-common components. The negative temperature coefficient of $V_{\rm m}^{\rm E}$ indicates the formation of complex in the three systems.

REFERENCES

- 1 K.S. Reddy, J. Chem. Thermodyn., 16 (1984) 597.
- 2 T. Jayalakshmi and K.S. Reddy, J. Chem. Eng. Data, 30 (1985) 51.
- 3 T. Jayalakshmi and K.S. Reddy, Can. J. Chem., 63 (1985) 2824.
- 4 K.S. Reddy and P.R. Naidu, Aust. J. Chem., 32 (1979) 687.
- 5 J.A. Riddick and W.B. Bunger, Organic Solvents: Organic Solvents in Techniques of Chemistry, 3rd edn., Vol. II, Wiley, New York, 1970.
- 6 J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds, Elsevier, Amsterdam, 1950, 1965.
- 7 D.V.S. Jain, S.B. Saini and V. Chaudhry, Indian J. Chem., 18A (1979) 198.
- 8 D.V.S. Jain, R.K. Wadi, S.B. Saini and J. Singh, Indian J. Chem., 16A (1978) 561.