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ABSTRACT

The vapour pressure of caesium iodide has been measured in the vicinity of the melting
point (903.5 K). Below the melting point dimerization in the vapour is negligible. The vapour
pressure can be expressed as:

log p/atm = (—9550+79) /T + (6.945 +0.093)

and for the enthalpy of sublimation, according to the “third law method”, the value

AHY s=193.1+0.1 kJ mol ! has been found. Above the melting point a sudden increase in

the fraction of dimers has been observed until a value (18.6 +1.8)% was reached at ~ 912 K.
The vapour pressure of Cs,I,(g) can be expressed as

log p/atm = (—7587+530) /T + (4.19+0.54)

and for its enthalpy of sublimation the value A Hyy, ;s = 229.9+ 1.0 kJ mol ! has been found.
From the enthalpies of sublimation it has been found that

A H(Csl, g, 298.15 K) = —155.04 0.2 kJ mol !
A H%(Cs,1,,g,298.15K) = —466.4+1.1 kJ mol !

A discussion of the literature 1s given.

INTRODUCTION

The vapour pressure of caesium iodide over solid and liquid €sI has been
measured by many authors. Different methods have been used to obtain the
vapour pressures: Knudsen effusion, transpiration experiments, mass spec-
trometry, and boiling point experiments. Notwithstanding the vast amount
of experimental material now available, there is not a consistent picture of
the vaporization behaviour of Csl and, consequently, it is hardly possible to
derive reliable thermodynamic data for the vapour. For instance, it is now
generally accepted that the vapour contains a substantial amount of dimers
— as is the case with the other alkali halides — but there is no general
agreement on the amount of dimers present at a given temperature (range).
Even in recent mass spectrometric studies the amount of dimers differs
widely. Whereas Emons et al. [1] observed an increase in the dimer fraction
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with increasing temperature from 2% at 683 K to 20% at 958 K, Venugopal
et al. [2] concluded recently that the contribution of dimers to the vapour
pressure is negligible below 873 K. Near the melting point (903 K) they
observed a sudden increase in the dimer fraction which afterwards decreased
from 22% at 1240 K to 18% at 1400 K. However, Topor [3], who measured
the vapour pressure of caesium iodide in the temperature range 1156-1376
K, found a constant amount of dimers (29%) over the whole temperature
range.

Because of the disturbing discrepancies in the literature we have decided
to measure the vapour pressure of caesium iodide in the vicinity of the
melting temperature of Csl in an attempt to connect the various measure-
ments published. These results, together with an evaluation of the literature,
will be given in this paper.

EXPERIMENTAL

The vapour pressures were measured using a transportation method, as
described before [4], in which the saturated vapour, in equilibrium with the
solid or liquid, is condensed and determined after transportation with a
known volume of an inert carrier gas (in the present case argon). The
velocity of the carrier gas has to be chosen such that it is saturated with Csl
vapour at each temperature of the measurements; this has to be determined
experimentally (plateau curve). A velocity of about 40 ml min~' was taken.

After each experiment the amount of carrier gas (which was collected over
water in a bottle of known volume) was determined after corrections for
temperature and pressure.

The amount of Csl vapour, carried by a known amount of gas, and
condensed in the tube, was determined by dissolving it in water and
analysing both caesium and iodine in the solution. Small amounts of
caesium were measured by atomic absorption spectrometry (AAS), larger
amounts by potentiometric acid—base titration with standard solutions.
lodine was titrated with a standard silver nitrate solution.

RESULTS

Two series of experiments have been done, one below the melting point of
caesium iodide (903.5 K) [5], the other above the melting temperature.

The vapour pressure in equilibrium with solid Csl

Equilibrium vapour pressures of Csl have been calculated from the data
in Table 1, taking Csl(g) as the only gaseous species. From these data the
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Fig. 1. The sublimation enthalpy at 298.15 K and the percentage of dimer as a function of
temperature.

enthalpy of sublimation of monomeric CsI at 298.15 K has been calculated
by the “third law method”. For this purpose the free energy function of
Csl(g), as calculated by Glushko et al. from spectroscopic data [6]. has been
combined with the free energy function of Csl(s) obtained from our mea-
surements [5], and based on new determinations of the enthalpy increment
values (HY — H%q 5) for Csl(s). As a result we obtain the value A H3y, s
= +193.17 + 0.12 kJ mol~!. This value is independent of the temperature of
the measurements, and we conclude therefore that a negligible amount of
dimers is present in the caesium iodide vapour below the melting point.

The vapour pressures of the equilibrium Csl(s) = Csl(g) as a function of
the temperature can now be expressed as:

log p/atm = (—9550 + 79) /T + (6.945 + 0.093)
and

A ,G°/T mol ' = (182828 + 1512) — (132.96 + 1.78)T

The vapour pressure in equilibrium with liquid Csl

When the vapour pressures of caesium iodide, above the melting point,
calculated as if the vapour consists of only monomers, are used to calculate
the sublimation enthalpy at 298.15 K using the “third law method’’, the
A H® values gradually change between 910 and 920 K until a new

constant value has been obtained (Table 2). This can be ascribed to the
formation of dimers in the vapour. In order to calculate the amount of
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dimers, we consider the following equilibria:

Csl(s) = Csl(g) (1
Csl(s) = CsI(1) (2
CsI(1) = Csl(g) (3
2GsI(1) = Cs, 1,(g) (4)

Since for the enthalpy of melting the value AH %= 24000 J mol ! has been
selected [5], we obtain

AG? /J mol~! = (24000 + 200) — (26.56 + 0.22) T
and by combination of AG} and AG3Y:
AG?/J mol ! = (15828 + 1500) — (106.4 + 1.8)T (1)

The vapour pressure of the monomeric species can thus be calculated from
eqn. (I) to give:

log p/atm = — (8296 + 80) /T + (5.56 + 0.10) (1)

and, because Zp=p_ ...+ 2ps; (where Zp is the total caesium iodide
pressure in Table 1, calculated as monomeric vapour) we obtain p,, the
vapour pressure of the dimer, by difference. In Table 2 the results of the
calculations are listed.

log Pcy /mm

10°K.T”

Fig. 2. The total vapour pressure of caesium iodide, and the vapour pressure of Cs,I,, as a
function of temperature.



52

For the vapour pressure of the dimer in equilibrium with CsI(l) we find:
log pc,,1,/atm = — (7587 + 530) /T + (4.19 + 0.54)

and for the percentage of dimers 18.6 + 1.8.

In Table 2 the enthalpies of sublimation for the monomeric and dimeric
species have also been listed. Again, the free energy functions of Csl(g) and
Cs,1,(g), calculated by Glushko et al. [6], have been used to calculate these
values. :

With the selected value for the enthalpy of formation of Csl(s) given in
part I of this paper, the enthalpies of formation of Csl(g) and Cs,I,(g) can
be calculated. Since the enthalpy of sublimation of CsI(g) obtained from the
(I = g) equilibrium has a larger uncertainty than the value obtained from the
(s — g) equilibrium, we take the latter. We thus obtain:

A Hyye 15(Csl, g) = —155.0 + 0.2 kJ mol !
Aszﬂ‘)x.ls(CSzIza g)= —466.4+ 1.1 kJ mol !

These values are slightly more negative than the values assessed by Glushko
et al. [6] (—152.320 and —454.033 kJ mol ™!, respectively). The differences
arise mainly from the different free energy function of the solid adopted
here, resulting in more positive values for the enthalpies of sublimation of
monomer and dimer,

DISCUSSION

Dimerization in the vapour of caesium chloride was observed for the first
time in 1958 by Milne et al. [7], and by Berkowitz and Chupka [8]. Shortly
thereafter, Akishin et al. [9] demonstrated that dimerization also occurred in
the vapour of the other caesium halides. For Csl they found a ratio between
the dimeric and the monomeric species of 0.03 at 787 K and 0.04 at 820 K.
Since that time a number of other mass spectrometric studies have appeared
confirming the presence of dimers in the vapour of Csl; however, without
any agreement on the equilibrium composition as a function of temperature.
For instance, whereas recent measurements by Venugopal et al. [2] indicated
that the amount of dimers below 883 K is much less than 5%, Matsumoto et
al. [10] observed the presence of dimers even at 673 K. The latter authors,
however, did not indicate the amount of dimers. Viswanathan and Hilpert
[11] could detect the presence of dimers in the vapour over solid Csl even at
604 K, but up to the melting point the amount of dimers observed by them
was low: the p,/p, ratio increased from 0.05 at 820 K to 0.08 at the melting
point.

Since most of the recent experimental determinations agree that the
amount of dimers in equilibrium with the sclid phase is less than 5%, the
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TABLE 3

Enthalpies of sublimation of CsI(g) and Cs,I,(g)

Ref. A o H°(298.15 K) (kJ mol™ )
monomer dimer

(recalculated values)

Deitz [12] 195.5+0.3 -

Cogin and Kimball [14] 195.4+0.7 -
190.74+0.8 -

Scheer and Fine [13] 191.5+04 -

Murgulesco and Topor [17] 196.1+0.1 226.6+0.4

Emons et al. [1] 165.0+2.1 -

Viswanathan and Hilpert [11] [191.242.0] * 2377407

Venugopal et al. [2] - -

Present investigation 193.17+0.12 2299+1.0

2 Not recalculated.

experimental studies of Deitz [12], Scheer and Fine [13], and Cogin and
Kimball [14] can be treated as if the vapour consists of monomers only. The
gradual change in A, H°(298.15 K) found in the extensive series of
measurements of the last authors indicates, however, that this is probably
not the case over the entire range of the measurements. Moreover, the two
series of measurements of these authors do not agree with each other. The
results have been summarized in Table 3.

Above the melting point the percentage of dimers rapidly increases. It can
easily be derived that

d(In p,/p,) . AHZO— AHlo
oT B RT?

in which p,, p,, and AH?, AH? are the vapour pressures and sublimation
enthalpies of monomer and dimer, respectively. At the melting point the
value of (AHY — AH{") changes. This results in a rapid increase in the p,/p,
ratio above the melting point. In the interpretation of the measurements,
done before 1960, no account has been made for dimerization in the vapour.
Thus, Ruff and Mugdan [15] and von Wartenberg and Schultz [16] observed
a boiling point of CsI at 1553 K, being the temperature at which the Csl
vapour pressure (= p, + 2 p,) reaches the value of 1 atm, but the amount of
dimers at the boiling point cannot be derived solely from these experiments.

The measurements by Murgulescu and Topor [17] could be evaluated
completely due to the fact that various techniques have been applied. Thus,
the authors combined the results of the transportation method with those
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obtained by the quasi-static Rodebush~Dixon method [18], and obtained in
this way average molecular masses of the vapour, yielding for CsI 29% of
dimers in the vapour between 1276 and 1376 K. This enables us to calculate
the vapour pressures of monomer and dimer, and their enthalpies of
sublimation. For a recalculation of these measurements we used the free
energy function of Csl(l), as calculated from our [H(T)— H%(298.15)]
measurements [5], and for the vapour species the free energy functions given
by Glushko et al. [6]. The results are listed in Table 3. :

Venugopal et al. [2] combined the transpiration method (916-1125 K)
with the Rodebush-Dixon method (977-1430 K), and found a sharp in-
crease in the dimer fraction near the melting point, and a decrease thereafter
from 22% at 1240 K to 18% at 1400 K. However, a recalculation of their
original data appeared to give not only lower values for the dimer fraction,
but at higher temperatures even mole masses lower than that of the mono-
mer.

Much of the scatter in the experimental determination of the fraction of
dimers in the present investigation arises from the fact that this fraction is
obtained by difference of two large numbers. A direct determination of the
dimer fraction by mass spectrometry can give more accurate results. Thus,
recent mass spectrometric measurements by Emons et al. [1] over solid and
liquid caesium iodide indicated a dimer fraction of 2% at 683 K and 20% at
958 K, in good agreement with our own measurements.
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