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ABSTRACT 

Confusion often arises in the use of Avrami-Erofeev expressions from the lack of common 
agreement as to the proper definition of the rate oonstant, made worse by the lack of an 
agreed definition of a specific rate constant in solid state decomposition studies. The first 
point is clarified and a specific functional rate constant k,, equal to the fractional decomposi- 
tion rate at EY =i 0.5, is proposed. Appropriately modified forms of f(a) and g(a), which are 
consistent with this definition are presented. 

INTRODUCTION 

On surveying the literature one can observe the wide use of isothermal 
and non-isothermal techniques which have been applied extensively to 
obtain the so called Arrhenius p~~eters (i.e., activation energy and pre-ex- 
ponenti~ A-factor) for various thermal decomposition reactions of solids. 
Results obtained by the various methods have produced a spread of values 
of the Arrhenius or kinetic parameters which cannot be justified on the basis 
of physico-chemical properties of the solids concerned or, indeed, as an 
artefaet of the instrumental techniques used [e.g., l-8). 

The extensive use over the last two decades of non-isothermal techniques 
in the study of solid state kinetics has led to the introduction of numerous 
mathematical methods aimed at obtaining the kinetic parameters from the 
experimental kinetic data. Widely varying values for the activation energy, 
E, and the pre-exponential factor, A, are obtained (91, even from a given set 
of experimental data especially by those methods which place primary 

Current addresses: 
* Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada. 
** Department of Chemistry, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, 
U.S.A. 

0040-6031/86,‘$03.50 0 1986 Elsevier Science Publishers B.V. 



94 

emphasis on the functional form, f(a), supposedly describing the kinetics. 
More consistent results are obtained by utilizing methods which lay the 
emphasis on determining E ~thout assi~ing a particular form to f(a); this 
has previously been commented upon by a number of workers including the 
present authors [lO,ll]. 

However, in the case of the so-called Avrami-Erofeev expressions [12-141 
which have been used extensively, the above confusion has been made worse 
by a lack of common agreement on the proper definition of the rate constant 
in the application of these expressions, which are often given as: 

1 - cy = eBK’” or - ln( 1 - a) = Kt” (1) 

or 

1 - (Y = eWfkt)” or - In(l - ff) = (kt )” (2) 

where K and k are the rate~#nstants defined by the appropriate equation, a~ 
is the fraction d~ompos~ at time t and n is a constant which in terms of 
the Avrami model is given by 

?Z=j3+A 

where fl is the number of steps for the production of stable product nuclei 
and h is the number of dimensions in which the product nuclei grow. 

METHODS 

Equations (1) and (2) in their differential forms may be written as: 

da/dt = nK*/"(l - cu)[ -ln(l - a)]‘-*“’ (3) 

and 

da/dt = nk(l - cu)[ -ln(l - a)f’-r’” (41 

The study of the literature has shown that confusion exists as to which one 
of the integral and/or differential forms should be used to evaluate the 
specific rate constants and hence the kinetic parameters via the Arrhenius 
equation which expresses the rate constant k, in the form: 

k, = A exp( -E/RT) (9 

The solid state decomposition rate constant, k, is defined by the expres- 
sion 

where k has units of reciprocal time. By comparison with eqn. (4) an 
obvious choice is 

k,=k (7) 



9s 

with 

f(a) = n(1 - 4x)[-ln(1 - c#-*fn (8) 

Hence the values of the kinetic parameters obtained utilizing 

k=A exp(-E/RT) (9) 

will be the values consistent with the definition of the rate constant in eqns. 
(6-8). 

If values of the equations for K (1) and (3) have been used to obtain the 
kinetic parameters, then as 

K=(k)” 00) 

and 

(k)” = A”(exp( -E,/RT))” 

= A” exp( -nE/RT) W) 

then the apparent values, A, and EK, calculated via the Arrhenius equation 
for the temperature dependence of K are related to the proper empirical (see 
eqn. 6) values in the manner 

AK =A” (12) 

and 

EK =nE 03) 

It is interesting to see the difference which would ensue if f*(a), given by 

f(a) = nf*(a) (14) 

is used in the treatment of the expe~ment~ data. In terms of expressions (2) 
and (4) this amounts to putting 

k* =nk=nk, (15) 

hence the apparent pre-exponential factor, A*, will be related to the original 
one as 

A* ==nA (16) 

It should be noted however, that the activation energy will remain 
unchanged, i.e., E* = E. This leads to the question of which value of the 
pre-exponential factor should be preferred and why, in any case, should such 
ambiguities arise? 

To help resolve these questions it is first useful to consider kinetic rate 
equations in the gas or solution phase. For example, for a second order rate 
process 

B + B -+ Products 



the rate equation would normally be written in the form 

d[Bl - - = k,[Bj2 
dt 

where k, is the specific rate constant, i.e., it is numerically equal to the rate 
at unit concentration (or unit activity, pressure etc.). The units of k, are 
time- ’ concentration- *; differing units for the concentrations would of 
course lead to different numerical values for k, and hence the pre-exponen- 
tial factor; though of course, these different values would be simply and 
unambiguously related to each other. The second order rate eqn. (17) cannot 
be rendered into a non-dimensional form in contrast to solid state rate 
equations which are invariably stated in non-dimensional form in terms of 
the fractional decomposition, LY. However the first order rate equation 
corresponding to a reaction 

B --, Products 

which may be written as 

d[Bl - - = k,[B] 
dr 08) 

can also be written in terms of the fraction, (Y of B which has reacted, viz. 

_ d[B1o(l -a) = k,(l - a)[B] 
dt 0 

where [EL], is the initial concentration of B, hence 

$f = k,(l - a) 

(19) 

and k, remains the specific rate constant, i.e., the fractional rate at unit 
con~ntration. From eqn. (20) it can be seen that k, also equals the 
fractional rate of decomposition when (Y = 0. Thus it might be thought 
useful to make a definition of a specific fractional decomposition rate 
constant at Q: = 0, zero decomposition. However, the functional forms of 
f( CX) in a number of commonly used cases are not amenable to such a choice 
as the f( cy) + 0 as a + 0; the Avrami-Erofeev expressions are a particular 
example of this behaviour. 

Now it is well known that in the mid-range of decomposition, say 
0.4 < cy < 0.6, most solid state decompositions show a reasonable approxi- 
mation to first order behaviour which suggests that it might be appropriate 
to use the midpoint of decomposition, a: = 0.5, to define solid state decom- 
position rate constants. This can be simply achieved by the statement: “The 
specific fractional decomposition rate constant k, shall equal the fractional 
decomposition rate at a = 0.5, the mid point of the decomposition; the proper 
choice of the m~~tiFii~atioe constant in f(a) must be consistent with this 
property, i.e., f(O.5) = I .” 
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RESULTS AND DISCUSSION 

In many cases, especially in the treatment of non-isothermal kinetic data, 
it is the integrated form of the rate equation which is utilized, i.e., 

J cx dix’ -=1: 
0 f(a’) J 

‘k(T)wdt (21) 
0 

and the function g(a) is defined as 

Under isothermal conditions (21) immediately gives 

g(a) = kt (23) 

but under non-isotherms conditions the right hand side of (21) must be 
evaluated using the approp~ate dependence of temperature on time; e.g., for 
a linear heating rate 

r=T,-i+t (24) 

where j? is the constant heating rate. In Table 1 the usual forms for f(a) and 
g( CX) are given for a number of commonly occurring cases. 

Table 2 lists the appropriately modified forms of f(a) and g(a) which are 
consistent with the present proposed definition of the specific fractional 
decomposition rate constant. In terms of the consistency currently achieved 
with respect to the kinetic parameters, especially the A factors, the proposed 

TABLE 1 

Commonly used kinetic expressions for solid-state de~mpositions A(a), R(a), D(a) and 
F(a) are the labels used by Sharp et al. 1171 

Mechanism IntegraI form f(o) 

Power Law sa(l-‘/s> 

Exponential law Ina-lna,=k(t~tO) 
Avrami-Erofeev, As(a) [ - ln(1 - a)]“’ = kt Y(l - a) [ - in(1 - a)]‘/* 
Avrami-Erofeev, A, (a) [ - ln(l - (u)]‘/~ = kt 3(1- a) [ -ln(l - a)12j3 
Contracting sphere (Mample), R,(a) l-(1 - a)‘/* = kt 2(1- a)“2 
Contracting sphere (Mample), R s (a) 1 - (1 - a)‘13 = kt 3(1- a)*‘3 
Ginstling-Brounshtein, Q(a) (l-2a/3)-(l-a)2’3= kt 3/2[(l-a)-“3-1]-’ 
One dimensional diffusion, L+(a) a2 = kt 1/2.a-’ 
Two dimensional diffusion, 4(u) (1 - a) In(1 - a)+ a = kt [ -In{1 - a)]-* 
Three dimensional diffusion, Q(a) fl -(l - (Y)‘/*]~ = kr 3/2(1- a)*13 

X[l-(1 - a)1/3]-t 
First order decay, F,(a) -In(l-a)=kt (I- a) 
Second order (l-a)-‘--l=kt (l- a)* 
Third order l,K!((l - a)-* -I] = kt (1 - a)3 
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definition of the specific rate constant will not usually make a significant 
numerical difference. However, it is nevertheless desirable that all data 
should be treated on a common and unambiguous basis. 

It is appropriate at this juncture to comment on the practical use of 
Avrami-Erofeev expressions in terms of the experimental kinetic data. 
Frequently this involves again taking logarithms of (2) to give: 

ln[ -ln(l- (Y)] =n lnk+n In t (25) 

Not surprisingly it is generally found that plots of ln[ -ln(l - OL)] versus Int 
produce straight lines in the range 0.15 -C (Y < 0.85, e.g. [14-161. However, it 
must be pointed out that for the optimal determination of the rate constant 
it is best to avoid direct use of expression (25), the result of double 
logarithmization. Such plots should be used to find the experimental value 

of n from the slope; once the value of n is determined a plot of ln( $---) 

versus t” allows k”, and hence k, to be found from the slope, rather than 
from the intercept. 

CONCLUSION 

To conclude it is worth considering how kinetic parameters obtained on 
the basis of the Avrami-Erofeev expressions relate to the kinetic parameters 
of the Avrami model [12]. It is said that the usual Avrami-Erofeev expres- 
sions are of considerable interest to solid-state chemists because they allow 
the cr versus t plots to be understood in Avrami model terms. Thus it is of 
importance carefully to consider conditions under which the Avrami model 
gives rise to expressions of the Avrami-Erofeev type and on the other hand 
when the application of such expressions is, in principle, entirely empirical. 
The present authors have considered this question in some detail and hope 
to publish the results in a forthcoming paper. 
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