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ABSTRACT 

A principle for drawing the base line is given when determining the enthalpy of the 
first-order phase transition by experiments with classical differential thermal analysis, 
power-compensated differential scanning calorimetry and heat-flux differential scanning 
calorimetry. When the principle is applied to Mraw’s model which is applicable to the three 
types of instruments, theoretically rigorous drawing of the base line is shown in the case when 
the heat capacity of the sample before and after transition is different. The enthalpy of 
transition is obtained from the area enclosed by the base line and the recorded trace. 

INTRODUCTION 

Dynamic differential methods have been extensively used to study ther- 
mal properties of materials. Three types of instruments have been de- 
veloped; classical differential thermal analysis (DTA), power-compensated 
differential scanning calorimetry (DSC) and heat-flux DSC. In any applica- 
tion of these instruments to enthalpic events, it is especially important to 
draw the base line when determining the excess enthalpy value due to the 
thermal anomaly. In classical DTA, the quantitative estimation is poorly 
established for the enthalpy of transition since the trace obtained by 
experiment depends on the thermal conductivity of the sample. However, 
quantitative treatments have been attempted using simplified models for 
classical DTA [l-5] after a theoretical analysis by Vold [6], and these 
manipulations have been extended and applied to heat-flux DSC [7-lo]. The 
problem of base line has been also discussed with respect to rough and/or 
inconsistent assumptions for power-compensated DSC [ll-131. Theoreti- 
cally rigorous treatments of the base line were given by Adam and Miller 
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Fig. 1. Sketch of Mraw’s model 1141. Th, temperature of the heater; T,, temperature of the 
sample-temperature measuring station; T,, temperature of the sample; C,, heat capacity of 
the sample-temperature measuring station; C,, heat capacity of the sample; R,, thermal 
resistance between the s~pletem~rat~e measuring station and the heater; R:, thermaI 
resistance between the sample and the s~pl~tem~rat~e measuring station. T,, T,, Cm, 
C,, R, and Ri have similar meanings for the reference side. 

[5], and Ozawa [lo], but these treatments are complicated and rather 
impractical. 

In this paper, we put forward a fundamental principle for drawing the 
base line and apply it to the general model presented by Mraw [14] which is 
applicable to all three types of instruments. The sketch of Mraw’s model is 
reproduced in Fig. 1, where the shaded regions are the parts having heat 
capacity values, while the unshaded regions have no heat capacity, but offer 
thermal resistance. No temperature gradient is considered in any part of this 
system. In a previous paper fl5], we solved analytically the equations 
governing heat flow within the system on the assumption that the values of 
heat capacity and of thermal ~nducti~ty were constant. It was shown that 
the temperature-lag of the sample could be estimated by analyzing the trace 
recorded in the experiments. The method of evaluating the actual tempera- 
ture was given in the case of the first-order phase transition. In the present 
study, we extend the series of our theoretical investigations on dynamical 
thermal instruments. The theoretically rigorous drawing of the base line will 
be given for the case when the post-transition base line is different from the 
pre-transition base line, i.e., the heat capacity of the sample after the 
transition is different from that before, assuming the constant thermal 
conductivity of the sample. 

FUNDAMENTAL PRINCIPLE 

The principle for drawing the base line is proposed as shown in Fig. 2, 
where the hypothetical traces are schematically drawn for classical DTA as 
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Fig. 2. Fundamental principle of drawing the base line in classical DTA. The hypothetical 
traces are given on the right-hand side, and the corresponding heat capacities and other 
thermal events are shown on the left-hand side. 1, stationary state of condition; 2, the 
first-order phase transition with substantial amount of latent heat; 3, heat capacity changes 
abruptly at the transition point. 
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Fig. 3. Theoretically rigorous drawing of the base line in classical DTA. The shaded area 
corresponds to the enthalpy of transition: (a) the heat capacity after the transition (C,,) is 
smaller than that before the transition (C,); (b) C,, > C,,. 
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an example on the right-hand side, and the corresponding heat capacities 
and other thermal events of the sample are shown on the left-hand side. In 
case 1, the trace is a straight line as the heat capacity of the sample is 
constant. In case 2, the first-order phase transition occurs with a substantial 
amount of latent heat. The trace begins to deviate from the pre-transition 
base line’at the time the transition starts, and after completion it returns 
asymptotically to the extrapolated pre-transition base line since the heat 
capacity value before and after the transition is the same. The area enclosed 
by the trace and the base line is R AH, where R is the thermal resistance 
between the sample and the heater and AH is the enthalpy of transition. In 
case 3, the heat capacity value changes abruptly at the transition point, 
where the trace begins to deviate from the pre-transition base line and 
becomes the new base line asymptotically. 

In a general case where the value of heat capacity after the first-order 
phase transition accompanying a substantial amount of the latent heat is 
different from that before the transition, the base line is drawn as shown in 
Fig. 3, and the area of the shaded region is proportional to the enthalpy of 
transition. In other words, the base line corresponds to the hypothetical 
trace which would be obtained by assuming no thermal anomaly. 

THEORETICALLY RIGOROUS TREATMENT OF MRAW’S MODEL 

In this section, the theoretically rigorous drawing of the base line is 
described for classical DTA, power-compensated DSC and heat-flux DSC, 
based on Mraw’s model. The temperature of the heater block is assumed to 
vary at a constant rate a; Th = Tl + at (the constant, Tf, is the temperature 
of the heater block at the start). The transition starts at the time ti, and it is 
completed at t,. The subscripts a and b are used to designate “after” and 
“before” the transition, respectively. 

In classical DTA, based on Mraw’s model, R’, and R: are omitted (Fig. 
l), and T, is represented as [6,15] 

- aR& + at + Tf 

where C, is an integral constant determined by a boundary condition. From 
eqn. (l), the trace after the transition, Dl(t - tf), is derived as 

D,(t-t,)=AT,exp (2) 

where AT, is the maximum deviation from the stationary base line after the 
transition. The theoretical trace is shown in Fig. 4(a). On the other hand, the 
base line during the excess thermal events due to the phase transition should 
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Fig. 4. Methods of drawing the base line in (a) classical DTA, (b) power-compensated DSC 
and (c) heat-flux DSC. Functions D and D’ represent the trace and the base line, respec- 
tively. The first-order phase transition starts at time ti and is completed at tf. to is the time 
at which the trace reaches maximum in heat-flux DSC. 

be drawn by assuming that the heat capacity value changes abruptly at the 
transition point without latent heat as shown in Figs. 2 and 3. Its function is 
represented as I);( t - ti), which decays exponentially with the time constant 

of KG, 

D;(t-fi)=ATzexp (3) 

where AT, is the temperature difference between the two stationary base 
lines before and after the transition. From eqns. (2) and (3), we obtain the 
base line function 

14) 

The area enclosed by the base line and the trace corresponds to the 



enthalpy of transition. This is verified as follows. The enthalpy of transition 
is represented as 

AH= +lr’(Tr, - T,,,) dt 
s t, 

= $l*‘( aR,C, + at) dt 

= & (At)* + aC,, At (5) 
s 

where At = t, - ti. When the heat capacity after the transition is smaller 
than that before the transition, AT, equals a At + AT, and AT, equals 
aR,( C,, - C,,). The shaded area in Fig. 3(a) is given as 

Area(ABC) + Area(AEF) + Area(BCED) - Area(BDF) 

= ;(At)2 + AT,R,C,, + AT, At - AT,R,C,, 

= ;( At)’ + R,C,,( AT, - AT,) + AT, At 

= t(At)‘+ a AtR,C,,+ aR,(C, - C,,) At 

= 4 (At)’ + aAtR,C,, 

= R, AH. (6) 

When C,, > C,, which is shown in Fig. 3(b), AT,i equals aAt - AT, and 
AT, equals aR,( C,, - C,,). The shaded area in Fig. 3(b) is given as 

Area(ACD) + Area(ADE) + Area(BEF) - Area(BCF) 

i- AT,R,C,, + AT,R,C,, - z 

=~(ATl)2+RsCw(AT,+AT2)-~(AT2)2 

= & [ (AT,)z - ( AT2)2] + a AtR,C,, 

= &AT1 - AT,)(AT, + AT,) + a AtR,C,, 

= y (a At - 2aR,C,, + 2aR&,) f a AtR&, 

= 4( At)” + a AtR,C,, 

= R, AH. (7) 

Therefore, in both cases, C,, < C,,, and C,, > CS6, we can estimate the 
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enthalpy of the first-order phase transition from the base line drawn as 
described above and the trace recorded in the experiments. 

In power-compensated DSC, based on Mraw’s model, R, and R, are 
omitted (see Fig. 1) and dqJdt is represented as [15,16] 

dq, 
dt+C,exp -j& +4G+Gd i 1 5 s 

where C, is an integral constant determined by a boundary condition. Since 
eqn. (8) is similar to eqn. (l), the method of drawing the base line is also 
similar to the case of classical DTA. The theoretical trace is shown in Fig. 
4(b). From eqn. (8), the trace after the transition, D2(t - tt), is derived as 

Q(f-tr)=AWiexp -2 
i 1 s sa 

(9) 

where AW, is the maximum deviation from the stationary base line after the 
transition. On the other hand, the base line during the excess thermal events, 
Di( t - ti), is given as 

D;(t-ti)=Awz exp (10) 

where AWz is the difference between the two stationary base lines before and 
after the transition. From eqns. (9) and (lo), we obtain the base line 
fucntion as 

(11) 

In heat-flwr DSC, the situation is rather complicated. The temperature of 
the sample-temperature measuring station, T,,, is represented as 

T,, = cyS1 exp( w,,t) + (Y,~ exp( wS2t) + at + T,f - aR,( C, + C,,) (12) 

which has been derived from the basic equations in our previous report [15]. 
In eqn. (12), aS1 and (Y,~ are integral constants determined by boundary 
conditions, and wS1 and wS2 are constants determined by the values of R,, 
R’,, C, and C,. The boundary conditions are represented as 

aS1 exp(a,rt) + a,2 expb,2t) = F,(t) 

w41 exp(w,rt) + as2c3s2 expk2t) = 40) (13) 

where F1(t) is a deviation from the stationary base line and F,(t) is a slope 
of the trace at the time t. The theoretical trace is shown in Fig. 4(c). The 
base line function D;( t - ti) must satisfy the boundary conditions 

~~;( ti) = AT2 

F,(ti) =O (14) 

where AT, is the temperature difference between the two stationary base 
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lines before and after the transition. From eqns. (12)-(14), D;( t - t,) is 

represented as 

DG(t-ti>= ( ws~A~~sa~){%2 exP[osa(t-ti)l -%I exP[wsa2(t-ti)]} 

On the other hand, the trace after t, satisfies the boundary conditions 

W,) = ATi 

MCI) = 0 (16) 

where t, is the time at which the trace reaches the maximum and AT, is its 
value measured from the stationary base line after the transition. Thus, the 
trace after t, is represented as 

From eqns. (15) and (17), we obtain the base line function as 

AT, 
o;(t- t,) = m D,(t- ti) 

i 1 1 

The method described above is also applicable to the case of C,, > Csb, in 
which the sign of AT, should be taken to be minus. 

In practical use for the three types of instruments, the curve of the trace 
after the maximum (AT, or AW,) recorded in the experiments should be 
reduced to the scale of the difference between the two stationary base lines 
before and after the transition ( AT2 or AW,). The reduced curve should then 
be shifted to the time ti and connected to the pre-transition stationary base 
line. The enthalpy of tr-ansition can be estimated from the 
the base line and the trace recorded in the experiments. 
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