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ABSTRACT 

In a previous work [l], we presented the demonstration of the relations~p between the 
activation energy value and the square of the temperature, and the slope of a non-isothermal 
thermogram. We present in this work, following similar arguments, a coherent demonstration 
with conclusions, that the relationship between & and the square of the temperature occurs 
under isothermal conditions, too. It can be demonstrated too, that E, depends on the relative 
slope of at least two isothermal runs. We conclude that there is complete independence of the 
E, and the g(u) value for the isothermal conditions. From the results, a simple 
graphical-numerical method, based on isothermal thermogravimetry, is proposed to solve 
and calculate the kinetic parameters E,, K(T), and K0 and the kinetic model in a very easy 
and accurate way. 

INTRODUCTION 

The deter~ation of the kinetic parameters (E,, K(T), Ke), using ther- 
mogravimetry was carried out using the general equation for reactions in the 
solid state [Z] 

This equation can be solved under isothermal conditions as 

g@> - JW)t 

Solving this equation for each g(a) and the possible values of n, a series of 
values of K( 2’) is found. Then, through the Arrheuius law it is possible to 
find a value of Eg for each g(a) and order. In order to find the kinetic 
mechanism, the isothermal E, values are usually compared with the non- 
isothermal E, values and the model with best agreement is proposed. Done 
in this way, the calculation is long and needs computational aid. A detailed 
study of the results obtained using this method, with the main g(a) (nuclea- 
tion, nucleation-growth, difussion models) (Table l), offers apparently 
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TABLE 1 

Kinetic functions g(a), in their integral form 

~echa~sm g(a) Deviation 

Nucleation controlled 
Power law 

Growth controlled 

Nucleation - growth controlled 
Avrami-Erofeev 

Diffusion controlled 
One-~rnen~on~ 
Two-dimensional 
Three-dimensional 
Three-dimensional 

av” n = 1: zero order 
n = 0.5: Dl 

[l-(1-a)‘-“]/(1--n) n = 0: zero order 
n =1/2: R2 
n=2/3: R3 
n =l: Fl 

[ - ln(1 - a)]“” n =l: Fl 
n=2:A2 
n=3:A3 

a2 Dl 
a+(l-a)In(l-a) 02 
[l-(1 - a)*/3]2 D3 
(l-2a/3)-(l- a)‘/3 D4 

surprising results to us: the E, values obtained are virtually independent of 
the equation and order used. These results have been checked out by us with 
several products [3]. Criado et al. [4] reach the same conclusions using 
semiempirical arguments. This coincidence of results has led us to try the 
general resolution of the method used till now, in order to give a mathemati- 
cal demonstration of these results. In this work we develop several expres- 
sions that permit us to check out the relationship between the E, and the 
square of the temperature of the process (already demonstrate for non-iso- 
thermal conditions), and the relations~p between II, and the relative slope 
of at least two isothermal measurements. The same expressions show us, that 
the E, is independent of g( CX) (and consequently of the kinetic model), while 
K(T) and K, are completely dependent on g( (u). 

RESULTS AND DISCUSSION 

For the resolution of the calculations we have used the two extreme points 
of the region usually considered in kinetic work, that is Q = 0.2 and ar = 0.8. 

~ela~io~s~ip between E, and At 

Figure 1 shows us two idealized isothermal thermograms, for the tempera- 
tures T, and T2 and their corresponding At, and At 2. 
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Fig. 1. Idealized isothermal runs at T,, T2. (See text.) 

According to the general equation g( LX) = K( T)t, we can write 

d%.*) = wl)ta 
g( &-J = K( T,)t, I nemogm at q 
and 

d%.*) = m2)tc 
&%.8) = fmh 

Thermogram at T2 

K( Tl) can be obtained from (1) and (2), and K( T,) from (3) and (4) 

WI) = 8(%.,) - &%,)/(t, - ta) 

jW2) = g(%.*) - gG%,)& - tc) 

By deriving the ratio (5)/(6), we obtain the important relation 

K(T,)/K(T,) = &/At, 

Applying the Arrhenius law at both isothermals, we obtain 

In K( T,) = In K, - E,/RT, and In K( T,) = In K,, - EJRT, 

Substracting both equations, we obtain 

ln[K(T,)/K(T,)] = J%/R(I/T, - I/T,) 

Rearranging and substituting K( T,)/K( T2) by their value (7), results 

E, = RT,T, ln( At2/Atl)/( Tl - T,) 

0) 
(2) 

(3) 
(4 

(5) 
(6) 

(7) 

(8) 
This equation shows us all the conclusions that have been indicated 

before: E, depends on the product TIT,, that is, on the square of the 
temperature. It shows, too, the relationship between E, and the natural log 
of the ratio of the At values between a = 0.2 - 0.8 of the thermograms used. 
There is no reference to g( CV) in the determination of the E, value. The 
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Fig. 2. Two systems of two idealized parallel thermograms with the same At, at different 
temperatures. 

expressions (5) and (6) show that the only parameters dependent on g(cw) are 
K(T) and &. 

Expression (8) can be presented in different ways that will let us make 
new considerations. 
Rearranging, we obtain 

At, = At, e( E,( Tl - T,)/RT,T,) (9) 

that lets us calculate At easily for a new T2, from the previously calculated 
E, value and from an isotherm run of reference. 

From (9), we obtain 

ln At, = (In t, - ELATE) + EJRT, 00) 

that demonstrates that for a given E,, the reacting time at different 
temperatures shows a logarithmical relation versus l/T, (ln t, - EJRT, is a 
constant value). 

Equation (10) can be obtained by substitution of (5) in the Arrhenius law. 

Reiat~o~ between the E, and the T 

If we present now, two isothermal runs at the temperatures T,, T2 and 
two isotherms runs, parallel at the temperatures T3, T4 {Fig. 2), by applying 
eqn. (g), these new expressions are obtained. 

Eal = Constant X TIT2 and Ea, = Constant X &T4 

in which the constant value is the same {dependent only on their AT, At 
that will be equal because they are parallel systems). By deriving the ratio of 
both expressions we obtain 
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This expression is identical to eqn. (7) or our previous work [l] for the 
non-isotherms conditions, and it demonstrates the coherence of the system 
presented. 

GENERAL RESOLUTION OF E, IN ISOTHERMAL CONDITIONS 

From eqn. (lo), may be written 

In At = EJRT + a, where a, = In t, - EJRT, 

Plotting In At versus l/T, for the different isothermal measurements we 
obtain from the slope of the plot, the E, value, while 

4 = 14da0.d - gbo.2)l/~o 1 

Now, we have found the E, value, but we still have to dete~ne all the 
other parameters and kinetic ch~acte~stics, that is, K(T), K. and the 
accurate model. 

For any sort of isothermal run, we have 

da,,) = a(T)t and gbo.d = K(Tb0.s 

Deriving the ratio, we obtain 

g( ao.2 >/g( cyO.8) = to,/to.8 (12) 

From the different equations of the Table 1, we can obtain the corre- 
sponding values to the ratio of the g(a) mentioned in (12). From the value 

TABLE 2 

Values of the ratio g(ff~.~)/g(u~,s~ and difference g(ff~,s)-g(~~.~), for the kinetic functions of 
Table 1 

Equation 

Zero order 
R2 
R3 
Fl 
A2 
A3 
Dl 
D2 
D3 
D4 

Power law 

n = 0.5 
n =l.O 
n =1.5 

g( %.Z )/g( (y0.8) g( fiO.8 I- & ao.2 1 

0.25000 0.60000 
0.19098 0.89443 
0.17265 1.03054 
0.13865 1.38629 
0.37235 0.79626 
0.51757 0.56536 
0.06250 0.60000 
0.04494 0.45663 
0.02981 0.16725 
0.03925 0.11978 

0.06250 0.6~ 
0.25000 0.6~ 
0.39685 0.51978 
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Fig. 3. Plot of g( cq,*)/g( u,,J vs. g( q,J - g( Lyo.2), for the principal kinetic models. 

t,,,/t,, (that has to be constant for any isothermal run of a product), and 
the best agreement between the possible theoretical values and the real 
values, the assignation of the kinetic model can be tried, and the K(T) 
values as indicated in [5]. In the Table 2, we have listed the values of the 
ratio and the difference of g(a), and once plotted becomes the Fig. 3. The 
plot shows that for many values of t,,/t,,, there is the chance of assigning 
more than one model. This ambiguity can be solved by proving which of the 
K(T) and g(a) values obtained graphically, fits better with our experimental 
thermograms. Finally, the K. value, is found from the Arrhenius law. 

THEORETICAL TESTING OF THE METHOD 

To test rigorously our proposal, we have made two theoretical isothermal 
curves (for the points (Y = 0.2 and 0.Q for all g(a) of the Table 1, from the 
arbitrary data given: Tr = 475 K, T, = 525 K, E, = 25 000 cal, K. = lOlo 
min-‘. The corresponding K(T) are obtained from the Arrhenius law, and 
are indicated too, in the Table 3. Applying the eqn. (8) to the pairs of AtI 
and At, values, we obtain as was foreseen, the E, value of 25000 cal, 
independent of the kinetic model. As mentioned above, we test that the ratio 
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TABLE 3 

Fundamental values of t, for two isothermal thermograms, calculated from the principals 
g( cy); the data used are: E, = 25 kcal mol-‘, K,, =lO” min-‘, T1 = 475 K, T, = 525 K 
(E, * = calculated value from eqn. (8) and At(475)/At(525) for each model) 

Equation 

Zero order 

to.2 to8 At to.2 to.8 At Ea * 

6.0463 25.8498 19.3874 0.5179 2.0717 1.5538 
R2 6.8226 35.7236 28.9010 0.5468 2.8630 2.3162 
R3 6.9487 40.2478 33.2992 0.5569 3.2256 2.6687 
Fl 7.2103 52.0046 44.7943 0.5779 4.1678 3.5900 
A2 15.2637 40.9925 25.7288 1.2233 3.2853 2.0620 
A3 19.5988 37.8668 18.2681 1.5707 3.0348 1.4641 
Dl 1.2925 20.6799 19.3874 0.1036 1.6574 1.5538 
D2 0.6942 15.4489 14.7547 0.0556 1.2381 1.1825 
D3 0.1660 5.5702 5.4042 0.0133 0.4464 0.4331 
D4 0.1581 4.0284 3.8703 0.0127 0.3228 0.3102 

25.000 
25.000 
25.000 
25.ooO 
25.000 
25.000 
25.000 
25.000 
25.000 
25.000 

Power law 
n = 0.5 
n =l.O 
n =1.5 

1.2925 20.6799 19.3874 0.1036 1.6574 1.5538 
6.0463 25.8498 19.3874 0.5179 2.0717 1.5538 

11.0506 27.8459 16.7952 0.8856 2.2316 1.3460 
T = 475 K K(T) = 3.0948 x 1O-2 T = 525 K K(T) = 0.38616 

25.000 
25.000 
25.000 

t&t,,_, is constant for each g(m), independent of T and the same as the 
value of g( a&/g( a&, indicated in Table 2. 

PRACTICAL TESTING OF THE METHOD 

The solid phase thermal deaquation-anation of the compounds 
[M(NH3)5H20][Co(CN),] has been investigated by means of the method 
proposed in this work. The results of the isothermal calculations, previously 
published [4], are shown in the Table 4. In Table 5, the experimental values 

of T, to.,, t0.8Y At and to.,/to.8 are shown for the different isothermal runs of 
these three products. Plotting the In At values versus l/T, the Fig. 4 is 
obtained. The plot parameters are indicated in Table 6. 

The E, value found from graph 3, demonstrates the high accuracy of this 
method, compared with the rigorous calculation of all the g(a) and orders. 

For M = Co, three mechanisms are possible (ratio near 0.17), and for Rh 
and Ir two mechanisms are possible. To choose the kinetic model, it is 
necessary to calculate t,, and t,, from the general expression t = 
g( a)/K( T), with the possible g(a) and K(T) (see Table 7). 

With this calculation (very short, that can be made with a pocket 
calculator), the kinetic model that presents a best agreement with the 
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TABLE 5 

F~d~ent~ values for the expe~ment~ isothermal runs for the compounds (M(NH,),- 

H~ol[C~CN)~l 

M T(K) to.2 tO.8 At to.dto.8 

co 438 3.25 19.68 16.43 0.1652 
440.5 2.70 16.80 14.10 0.1607 
443 2.10 12.50 10.40 0.1680 
445.5 1.90 11.10 9.20 0.1712 
448 1.70 9.30 7.60 0.1828 

Rh 

Ir 

443 1.14 5.31 4.17 0.2147 
445.5 1.38 5.18 3.80 0.2657 
448 1.44 4.68 3.24 0.3075 
450.5 1.15 3.66 2.51 0.3142 
453 1.10 3.26 2.16 0.3374 

448 2.36 5.09 2.73 0.4644 
450.5 2.14 4.55 2.41 0.4698 
453 1.89 3.99 2.10 0.4734 
455.5 1.66 3.52 1.86 0.4716 
458 1.55 3.21 1.66 0.4825 

experimental value of the ratio t,,/t,, is assigned. Table 8 shows the values 
obtained by this method and the comparison with the values previously 
published. The comparison of the results with the experimental values 
(Table 5), shows the greater exactitude of the new calculation. 

Fig. 4. Plot of In At vs. l/T (eqn. (lo)), for the compounds [M(NH~)~H~~J~C~CN)~j. The 
slope gives the E, value. 
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TABLE 6 

Parameters obtained from the plots In t vs. l/T, corresponding to Fig. 4, and E, value 
derived from a, 

M = Co(II1) 
f2i = 15.4544 r2 = 0.9922 
a, = - 32.481 E, = 128.3 kJ mol-’ 

M = Rh(II1) 
et = 13.8603 r2 = 0.9882 
a, = - 29.814 E, = 115.1 kJ mol-’ 

M = Ir(III) 
a, = 10.2411 r2 = 0.9996 
aa = - 21.857 E, = 85.0 kJ mol-’ 

TABLE 7 

K(T) and K, values for [M(_NH~)sH20][Co(CN),], obtained in this work (see comparison 
with Table 4) 

T(K) M=Co M=Bh M = Ir 

438 
440.5 
443 
445.5 
448 
450.5 
453 
455.5 
458 

K(T) In K, 

7.824x10-* 28.641 
9.117 x10-2 28.593 
0.1236 28.700 
0.1397 28.626 
0.1692 28.624 

- 
- 

WO In K,, 

- - 
- - 

0.2313 25.729 
0.2538 25.646 
0.2977 25.632 
0.3843 25.716 
0.4465 25.696 

K(T) In K,, 

- 

0.2429 17.351 
0.2751 17.394 
0.3158 17.361 
0.3565 17.358 
0.3995 17.350 

TABLE 8 

Fundamental values of t for the isothermal runs of [M(NH,),H,O][Co(CN),] a 

M T(K) G.2 t* 0.8 At* t:.2/t0.8 to*.: . t,*Q At** tir.t/t0.8 

co 438 3.34 19.77 16.43 0.1689 6.18 23.06 16.88 0.2680 
0.1691 5.22 
0.1693 4.00 
0.1689 3.46 
0.1694 2.87 

0.2678 
0.2682 
0.2682 
0.2682 

Rh 

440.5 2.87 16.97 14.10 
443 2.12 12.52 10.40 
445.5 1.87 11.07 9.20 
448 1.55 9.15 7.60 

443 1.67 5.84 4.17 
445.5 1.52 5.32 3.80 
448 1.30 4.54 3.24 
450.5 1.01 3.52 2.51 
453 0.87 3.03 2.16 

448 2.45 5.18 2.73 
450.5 2.16 4.57 2.41 
453 1.88 3.98 2.10 
455.5 1.67 3.53 2.86 
458 1.49 3.15 1.66 

0.2860 1.56 
0.2857 1.45 
0.2863 1.24 
0.2869 0.95 
0.2871 0.81 

0.4730 2.60 
0.4726 2.31 
0.4724 2.05 
0.4731 1.74 
0.4730 1.57 

19.49 14.27 
14.92 10.92 
12.90 9.44 
10.70 7.83 

5.83 4.27 
5.41 3.96 
4.62 3.38 
3.54 2.59 
3.01 2.20 

5.32 2.72 
4.74 2.43 
4.20 2.15 
3.58 1.84 
3.22 1.65 

0.2676 
0.2680 
0.2684 
0.2684 
0.2691 

Ir 0.4887 
0.4873 
0.4881 
0.4860 
0.4876 

a * This work. ** Previously calculated values. ** This work. The comparison of the values 
obtained in this work with those given in Table 5, shows the greater accuracy of our new 
method. 
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CONCLUSIONS 

The method presented lets us calculate, in an easy and accurate way, the 
kinetic parameters E,, K(T), K, and the kinetic model, in isothermal 
conditions. The main advantage of this system is that it permits the 
resolution, in just a few minutes and with a pocket calculator, instead of the 
calculation with computers that is used in the classical system. It only 
requires the measurements of two experimental points. It permits us to 
control the reaction if the measurements are correct while making the runs, 
by the control of the constant value t&t,,,. 

It is demonstrated that there is non dependence of E, and g(a). It is 
corroborated that the comparison with a non-isothermal run, is not neces- 
sary to determine the kinetic model. It is evident that the kinetic parameters 
can be calculated with two isothermal runs or with an isothermal run (that 
gives the correct g(a)), and another non-isothermal run (see ref. 1). 
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