BASIC LANGUAGE PROGRAM TO EVALUATE NON-ISOTHERMAL KINETIC PARAMETERS FROM THERMOANALYTICAL DATA

EUGENIA EFTIMIE and E. SEGAL

Chair of Physical Chemistry and Electrochemical Technology, Polytechnical Institute of Bucharest, Bd. Republicii 13, Bucharest (Romania)

(Received 10 February 1986)

ABSTRACT

An improved program for automatic processing of thermoanalytical data to obtain non-isothermal kinetic parameters using the Coats-Redfern method is presented.

INTRODUCTION

According to the integral method of Coats and Redfern [1], the equation used to determine non-isothermal kinetic parameters is:

$$\log \frac{F(\alpha)}{T^2} = \log \frac{AR}{aE} - \frac{E}{4.575} \frac{1}{T}$$
(1)

where: α stands for the conversion degree, T for the temperature (K), $F(\alpha)$ for the conversion integral, a for the heating rate, R for the gas constant, A for the pre-exponential factor, and E for the activation energy.

It has been shown that eqn. (1) leads to correct results only for 2RT/E < 1 [1], a condition which is generally fulfilled. For the "reaction order" model the conversion integral takes the form:

$$F(\alpha) = \frac{1 - (1 - \alpha)^{1 - n}}{1 - n} \quad \text{for } n \neq 1$$

$$F(\alpha) = -\ln(1 - \alpha) \quad \text{for } n = 1$$
(2)

where n stands for the reaction order.

The difficulties connected with the linearisation of eqn. (1) for the correct value of n have been by-passed by using a computer program for automatically processing the experimental data [2-4].

This paper is dedicated to a program written in BASIC, actually dealing with an improved variant of a primary form of the program given in ref. 5, where one calculates the kinetic parameters for all reaction orders between 0 and 2. This program allows the value of the "reaction order" to be selected which corresponds to the most accurate linearisation $[\log[F(\alpha)/T^2], 1/T]$ as well as the intercept and the slope of the corresponding straight line and, thus, the pre-exponential factor and activation energy.

INPUT DATA

- N number of experimental points
- W_i weight loss of the sample at temperature T_i
- T_i temperature (K)
- Z total weight loss of the sample
- U heating rate

The value of N was taken as 20. In the vector Y(i) the values of $\log[F(\alpha_i)/T_i^2]$, with $\alpha_i = W_i/Z$, indexed for a given reaction order n, are calculated, and in the vector X(i) the values T_i^{-1} are introduced. The correlation index of the linear representation will be denoted by V. In A, B, C, D, E the necessary elements for the least squares method are calculated. In P and Q the slope and the intercept of the straight line are calculated. In K and M the standard deviations for X(i) and Y(i) are calculated and V finds the correlation index of the linear representation. The values of the activation energy (kcal mol⁻¹) and pre-exponential factor (s⁻¹) are calculated with the following formulae:

$$E = -4.575P$$

(3)

Fig. 1. Flow diagram of computer program.

$$A = 10^{\text{Q}} U \frac{E}{60R}$$
(4)
(R = 1.986 cal mol⁻¹ K⁻¹).

If the condition:

$$|\mathbf{V}| \in (0.999 - 1) \tag{5}$$

is not fulfilled for $0 \le n \le 2$, the input data should be re-analysed or the initial and final values of the step for the reaction order should be changed. If condition (5) is fulfilled, the values of E and A are calculated and displayed. In Fig. 1 and the Appendix, the logical diagram and the instructions of the program are given, respectively.

The program is called up by the instruction: RUN (label of the program beginning).

The program was checked with a programmable minicalculator (Sharp PC-1251) to determine the non-isothermal kinetic parameters of the decomposition of some polynuclear coordination compounds [6].

APPENDIX: COMPUTER PROGRAM

```
1 DIM T(20), W(20), Y(20), X(20)
2 INPUT "OBS NUMBER", N
3 FOR I= 1 TO N. PRINT"I=", I
4 INPUT"T", T(1)
5 INPUT"W 7", W(I)
6 NEXT /
7 PRINT " REACTION ORDER "
8 INPUT "W MAXIM=",Z
9 INPUT " HEATING RATE=".U
10 INPUT" OBS NUMBER=?", N
11 WAIT 48
12 PAUSE"ENTER", N," PAIRS"
13 R= 0
14 A=0, B=0, C=0, D=0, E=0
15 FOR /=1 TO N
16 WAIT
17 X(1)=(171)+273)A-1
18 IF (R=0) THEN GOTO 23
19 IF (R=1) THEN GOTO 25
20 H=(1-(W1)/Z)^(1-R))/((1-R)(T(1)+273)2)
21 Y(1)=LOG(H)
22 60 7 0 26
23 Y(1)=LOG((-(W(1)-Z)/Z) /((T(1)+273)+2))
24 GO TO 26
25 S=LN(W1)/Z) Y(1)=LOG(-S+(X(1)+2)
26 WAIT
27 A= A+ X(1)
28 B = B + X(1) + 2
29 C = C + Y(I)
30 D=D+Y(1)^2
```

250

31 E= E +(X(I) +Y(I)) 32 WAIT 128 B NEXTI 34 WAIT 35 F= A/N 36 G=C/N 37 J=B-((A+2)/N) 38 K= SQR(J/(N-1)) 39 L=D-((C * 2)/N) 40 M= SQR (L/(N-1)) 47 0=E-(A+C/N) 42 V=0/SQR(J+L) PRINT"CORRELATION=", V 43 PRINT "REACTION ORDER=", R 44 IF((ABS(V) >, 999) AND (ABS(V)-1)) THEN GO TO 46 45 GO TO 59 46 P=0/1 47 Q= G - (P+F) 48 WATT 128 49 PRINT EQUATION IS ... SO WAIT 51 PRINT " Y=", Q,"+", P,"X" 52 E= 4,575+P 53 PRINT "ENERGY=", E 54 WAIT 55 A= (10+Q)+U+E / 120 56 PRINT "FACTOR=", A 57 WAIT SO IF (R= 2) THENGOTO 61 59 R=R + 0.2 60 GO TO 14 61 PRINT= PRINT . WAIT BEEP 3 62 END

REFERENCES

- 1 A.W. Coats and J.P. Redfern, Nature (London), 201 (1964) 68.
- 2 J. Šesták, Thermophysical Properties of Solids, Academia, Prague, 1984, pp. 366-395.
- 3 V. Marcu and E. Segal, Rev. Chim. (Bucharest), 28 (1977) 93.
- 4 T. Coseac and E. Segal, Bul. Inst. Politeh. Bucuresti, Ser. Chim.-Metal., in press.
- 5 E. Eftimie and E. Segal, Bul. Inst. Politeh. Bucuresti, Ser. Chim,-Metal., in press.
- 6 E. Eftimie and E. Segal, unpublished data.