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ABSTRACTI’ 

Constant heating rate thermoanalytical curves were simulated for processes governed by a 
phase boundary reaction and the heat conduction inside the sample. The effects of thermal 
conductivity, the heat of the reaction, the sample size, etc., on the shape of the peak and on 
the kinetic parameters estimated without considering thermal resistance are described. 

Dimension analysis was applied to obtain quantitative expressions of: 
(a) the maximum difference between the temperature of the reacting interface and the 

program temperature, 
(b) the criteria of accurate estimation of kinetic constants without considering heat transport, 
on the basis of material and ex~men~ parameters. 

INTRODUCTION 

Methods of thermal analysis are usually applied in the investigation of 
solid substances. In kinetic studies based on thermoanalytical curves, the 
following rate equation is used almost exclusively: 

da 
-&- =A exp 

However, eqn. (1) has some formal ch~acte~stics; thus the values of the 
pre-exponential factor and the activation energy are influenced by several 
material and experimental parameters which are not included in eqn. (1) 
explicitly. Among others, the specific surface, grain size, structural defects 
and the pressure belong to these parameters [l]. With a rare exception, the 
pre-exponential factor A, always depends on the sample size [2-41. 

It is also well known that the transport processes play an important role 
in the reactions of solids, and - depending on the parameters of the sample 
and the experiment - they may be rate-determining for the overall process. 
Among the f(a) functions used in eqn. (l), some correspond to diffusion 
mechanisms [l]. The engineering approach of describing the tr~sformations 
of large solid samples with defined geometry should be based on the laws of 
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heat and component transport and the temperature and concentration 
gradients in the system [5]. 

The transport processes were found to determine the character of the 
decomposition curves of 0.5-50 mg calcium carbonate samples [2]. 

Resistances to heat transport occur between the heating element and the 
sample holder, in the wall of the latter, between the sample holder and the 
sample, and within the sample itself. In the opinion of Paulik and Paulik [6], 
one of these resistances often determines the rate of the whole process. 

The description of the transformation rate worked out by Draper and 
Sveum [7] corresponds to the case when a chemical reaction takes place in 
equilibrium conditions at a constant temperature, and the rate of the process 
is determined by heat transport alone. A similar starting assumption was 
applied by Meisel et al. [8,9] who studied the operation of DTA cells by 
means of an electric analog circuit and mathematical simulation. 

When the rate of the transformation and the signal of the thermoanalyti- 
cal instrument are determined by heat transport alone, no information can 
be obtained on the kinetics of the chemical reaction. Therefore, research 
workers intend to provide an intensive heat exchange between the sample 
and the surroundings with the aid of proper instrument design and small 
samples. 

If the heat resistance within the sample is neither dominating nor negligi- 
ble, the temperature of the reacting substance and its time derivative differ 
from the temperature measured outside the sample and the chosen heating 
rate, respectively. The actual temperature, which is not uniform in the 
sample, is unknown. Usually, the measured curve is evaluated using eqn. (1) 
with the assumption that the temperature of the sample obeys the linear 
program. In this case, according to Sestak [lo], deviation from the tempera- 
ture program can be regarded ,as an error source of the estimated kinetic 
parameters. In the same work, Sestak also suggested approximate equations 
for the temperature difference between the surface and the center of 
disk-shaped or cylindrical samples. The error caused by the deviation from 
the ideal temperature program was studied by Varhegyi in detail. First he 
pointed out that neglecting the temperature difference in question distorts 
the shape of the curve and a 5 K temperature difference within the sample 
results in unacceptable errors of the estimated kinetic constants [ll]. Sub- 
stituting 

f(a) = (1 - (Y)” (2) 
in eqn. (l), he described the sign of the error of the estimated apparent order 
depending on the convex or concave character of the real T(t) function [12], 
and specified error bounds of the activation energy and the formal order 
[13]. Reich and Stivala investigated the degradation of Teflon [14]. Their 
cylindrical samples were embedded in a thermal insulator so that only one 
of the faces was exposed. They found that, for lower conversions, the 
decomposition could be described by a mathematical model taking into 
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account the rate of the chemical reaction and one-dimensional heat conduc- 
tion. 

In the present work, we intend to answer the following questions: 
(a) How do the parameters related to heat transport (sample size, heat of 

reaction, thermal conductivity, heating rate, etc.) influence the shape of 
thermoanalytical curves? 

(b) What is the effect of neglecting the thermal resistance of the sample on 
the estimated kinetic parameters? 

(c) What conditions should be satisfied by the parameters of the reaction 
and the experiment for acceptable reliability if the kinetic constants are 
estimated without considering thermal resistance? 

These problems were studied by means of simulated, constant heating 
rate curves. In the following, the part of the thermoanalytical curve belong- 
ing to the reaction will be called a peak, though the model and the results 
concern both differential and integral curves. 

The mathematical model corresponds to a process whose rate is de- 
termined by a three-dimensional phase boundary (contracting envelope) 
reaction and the heat conduction within the sample. 

The shape of the simulated peaks was characterized by empirical parame- 
ters discussed in detail in previous works [15-181. The definitions of the 
empirical parameters used here are listed in the Notation section. Each of 
these quantities can be related to a property of the peak as the position 
along the temperature axis (T(Max); Mm), width (AT(0.8, 0.2) IV), sharp- 
ness (U) or asymmetry (cy(Max), R(0.6)). The empirical parameters men- 
tioned were appied in the investigation of the reproducibility of experimen- 
tal DSC curves [15], of the effect of noises and baseline [16] and that of the 
possibility to estimate kinetic parameters [17,18]. 

CALCULATIONS 

The mathematical model 

Let us consider a reaction of a solid substance whose products include at 
least one solid, e.g. solid, = solid, + gas. If the solid phases are pure, there is 
a reacting phase boundary moving toward the interior of the sample 
(contracting envelope). The heat required for the transformation reaches the 
reacting phase boundary through the porous solid product. (A number of 
real processes belong to this class, e.g. the decomposition of metal carbonates 
and hydroxides.) 

The basic assumptions of the model are: 
(1) The overall rate of the process is determined by the chemical reaction 

at the moving boundary and the heat conduction within the sample (i.e. both 
the thermal resistances outside the sample and the resistance to mass 
transport are negligible). 
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(2) The heat flux into (or out of) the sample is equal to the heat effect of 
the reaction. 

Assumption (2) is equivalent to neglecting the heat capacity of the 
sample; in other words, the heat required for the change of sample tempera- 
ture is not taken into account. A coarse estimate of the fraction neglected in 
this way can be obtained as follows. 

Let the temperature range where the transformation rate is significant be 
50 K, the heat of reaction 40-100 kJ mol-i and the molar heat capacity 
50-200 J mol-’ K-l (being real in the field of inorganic substances). 
Starting from these values, the enthalpy change of heating amounts to 2.5% 
of the heat effect of the reaction in the most favorable case and to 25% in 
the worst. Thus, neglecting the heat capacity seems an acceptable approxi- 
mation for a number of reactions. 

Besides, the model includes some further simplifications and limiting 
conditions. The chemical reaction is assumed to proceed far from equi- 
librium (excluding the reverse reaction); the density, heat of reaction and 
thermal conductivity are treated as constants during the transformation. A 
spherical sample geometry was chosen. Real experimental conditions are 
often close to this; in such cases n = 2/3 is valid in eqn. (2). 

At a specific moment, when the radius and temperature of the reacting 
(spherical) phase boundary are known, the rate of transformation can be 
expressed in the form 

dN 
dt = 4r’rA exp 

If we apply eqns. (1) and (2) to our case, as usual in the field of thermal 
analysis, 

$f = A exp( - ET) (1 - (Y)~‘~ 

is obtained. The pre-exponential coefficients of eqns. (3) and (4) are not 
identical, as pointed out in our previous works [2-41, their dimensions are 
also different (see the Notation section). In order to obtain the velocity (u) 
of the advancing reacting phase boundary, let us express the rate of 
transformation as (kg s-l): 

git4= -4r’azp 

After rearrangement, this yields 

dr A’M 
u=-;Ti=-pexp 

(5) 

(6) 

The heat flux reaching the reacting boundary can be calculated from the rate 
of transformation and from the temperature difference between the outer 
surface of the sample and the reacting boundary. Let us distinguish these 
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values by indices v and A, respectively, though 0, and & must be equal, 
according to basic assumption (2). 

Equation (8) corresponds to the heat conduction through the spherical shell 

AH (7) 

(8) 

between the outer surface and the reacting phase boundary, if the outer 
radius is unchanged during the reaction. Taking into account basic assump- 
tion (l), T(r,,) is always equal to the program temperature. 

The simulation procedure 

The basic equations discussed in the preceding section are sufficient to 
calculate the temperature of the outer surface, the radius, temperature and 
velocity of the reacting phase boundary at time t (T( ro), T, r and u, 
respectively), if their values are known a little earlier, at t - At (T’( rO), T’, 
r’ and u’). Figure 1 shows the block diagram of the iteration procedure 
worked out for this purpose. 

The temperature of the outer surface is 

T( rO) = T’( rO) + j3 At (9) 

The starting values of the temperature and radius of the reacting interface 
are 

r, = r’ - v’ At 00) 

Tl = T’ (11) 

Substituting r, and Tl into eqn. (7), 0, is obtained. Then, using this 
value as &, a new temperature (T2) is calculated from eqn. (8). Now, if we 
are close enough to the values adequate to basic assumption (2), the absolute 
difference of the first and second temperatures will be lower than a pre- 
selected limit 

ST,=IT,-T,I<c (12) 

Otherwise, if eqn. (12) does not hold, T2 is chosen as the temperature of the 
reacting phase boundary, and the iteration is repeated from calculated 0, 
(see version a in Fig. 1). These steps can be repeated until the actual ST 
value becomes lower than E. 

Depending on the parameters, the iteration steps outlined here may lead 
to increasing Sq values. In this case, a reverse order of steps should be 
followed: first QA is calculated from T accordingly to eqn. (8), then this 
heat flux is substituted for 0, in eqn. (7) and a new temperature is obtained 
(version b, Fig. 1). 
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Fig. 1. Block diagram of the iteration procedure. 

At the end of the iteration when we have an acceptable value of T+r, this 
value is regarded as the correct temperature of the reacting phase boundary 
(T), and the velocity determined by eqn. (6) is used to calculate the radius of 
the reacting boundary at time t: 
r=r’-v At (13) 
Now (Y and dcu/dt. needed in the evaluation of peak shape can also be 
obtained. 

The procedure outlined here may be applied in a step-by-step manner to 
generate the whole peak, starting from a suitably low temperature. Ttio 
remarks should be made to this point. 
(a) Mathematically possible sets of parameters render the iteration of the 

reacting phase boundary divergent. However, during the simulations, 



319 

within the ranges of parameters applied in the present work, an accepta- 
ble accuracy could always be achieved (e.g. ST < 0.01 K when the 
temperature difference between the outer surface and the reacting phase 
boundary amounted to several Kelvin). 

(b) Some errors may be accumulated in recoursive procedures. In order to 
check this effect, curves generated by this procedure, using a very high 
thermal conductivity, were compared to curves generated by a proven 
program based on eqn. (4). If the distance of adjacent points satisfied 
the /3 At Q 1 K condition, the two curves agreed reasonably well. 

Evaluation 

In the characterization of the simulated peaks, the empirical parameters 
discussed in earlier works [15-181 and mentioned in the Introduction were 
applied. In the calculation the points of the simulated curves were given by 
the program temperature (T( r,,)), the reacted fraction (a) and the da/dT( r,,) 
rate; the latter equals P-‘(da/dt). Besides, the difference between the 
temperature of the external surface and that of the reacting phase boundary 
was also followed. 

The calculations were carried out on an HP-85A personal computer; the 
same program contained the simulation and the evaluation of curves. 

The ranges of input parameters 

The parameters of the reaction and the “experiment” were chosen to 
represent real cases occurring in the field of thermal analysis. Thermal 
conductivity, sample radius and heating rate were varied in wide ranges. 
Besides, two pre-exponential factor-activation energy pairs were used, re- 
sulting in peaks of considerably different width. Changing the reaction heat 
was not needed as - taking into account the form and the use of eqns. (7) 
and (8) - the X/AH ratio is of interest. 

The real range of the thermal conductivity is below 10 W m-l K-l. At 
several hundred Kelvin, metals and alloys only possess higher X values [19]. 
Moreover, in the present model, heat transport takes place through a porous 
layer, even if the sample is originally compact. Thus, an effective thermal 
conductivity lower than the h value of the compact substance should be 
considered. Among porous refractory materials, thermal conductivities in 
the order of 0.1 W m-l K-’ are not exceptional [19]. 

RESULTS AND DISCUSSION 

The effect of sample size, thermal conductivity and heating rate on peak shape 

Several empirical parameters characteristic of peak shape are summarized 
in Table 1 for curves simulated with different thermal conductivities. The 
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TABLE 1 

The effect of thermal conductivity on the parameters of peak shape, in the case of 
A' = 4.72 x 1012 mol me2 s-l- E/R =1.670~10~ K, /?=1/6 K s-l, M=O.l kg mol-‘, 
p = 2000 kg rnm3, AH = 100 k; mol-’ and r, = 3 mm 

h (W K-’ m-l)= 00 100 20 5 1 0.2 

T(MWCK) 541.5 

MIR cK) 530.6 

WW W 517.6 

7YO.8) WI 545.6 

W W 38.3 
AT(O.8,0.2) (K) 28.0 

a(M=) 0.692 
R(0.6) 0.731 

- 

541.5 541.5 540.5 540.5 541.8 
530.7 530.8 531.4 533.8 542.1 
517.6 517.6 517.6 517.9 519.1 
545.7 546.0 547.0 551.5 556.7 

38.4 39.1 41.3 49.8 73.1 
28.1 28.4 29.3 33.5 47.6 

0.691 0.686 0.645 0.587 0.489 
0.730 0.727 0.719 0.691 0.647 
0.3 1.3 4.4 17.5 51.6 

other material and experimental constants are fixed. Figure 2 demonstrates 
the corresponding rate curves and the curves of the difference between the 
temperature of the outer sample surface and that of the reacting interface. 
The maximum values (1) of this difference are shown in the last row of 
Table 1. Note that T(r,), i.e. program temperature, appears on the abcissa 
and in the expression of the tr~sfo~ation rate in Fig. 2. Thus, the rate 
curves are equivalent to dru/dd vs. t curves. 

Using the data in Table 1 the effect of decreasing thermal conductivity 
can be characterized as follows. The higher the fraction reacted, the greater 
is the shift of T( CX) valuescompared to those belonging to X = co. The effect 
of X on the peak maximum temperature and the first relative moment is 
relatively small. The empirical parameters related to peak width (W and 
AT(0.8, 0.2)) show a considerable increase as h decreases. Similarly, quanti- 
ties related to peak asymmetry (or(Max) and R(0.6)) are quite sensitive to 
the thermal conductivity. The data demonstrated in Table 1 belong to a 
sample radius of 3 mm; i.e., using the density given in the heading, to an 
initial sample mass of 230 mg. Similar series of curves were generated with 
sample radii of 10, 1 and 0.3 mm, corresponding to 8.4 g, 8.4 mg and 0.23 
mg initial mass, respectively. The first relative moment, the reciprocal of the 
maximum transformation rate, and the R(0.6) ratio of these peaks are 
included in Table 2. 

The maximum difference between the temperature of the external surface 
and the reacting interface is shown in Figs. 3 and 4 as a function of the 
thermal conductivity and the sample radius, respectively. 

In order to assess I, it may be compared to the width of the peak. In the 
case of r. = 3 mm and h = 5 W K- ’ m- ’ the maximum difference exceeds 
10% of the IV value belonging to X = 00 (see Table 1). For r. = 0.3 mm, I 
reaches this ratio at about 0.05 W K-’ m-’ (Table 2). 
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In a previous study [17,18] three empirical parameters, related to the 
position, the width and the sharpness or the asymmetry of the peak (e.g. 
MrR, Wand R(0.6)) were found suitable for the estimation of A, E and n if 
eqns. (1) and (2) were valid: 

Let us consider the data in Table 1. In the case of a fixed sample radius, X 
and ~(0.6) change in the same sense. As shown in the works mentions 
before [17,18), lower values of ~(0.6) belong to higher formal order, and this 
relations~p can be applied in the es~ation of I?. For example, R(0.6) = 
0.705 yields n = 1. 

b 

Fig. 2. Curves of the transformation rate ( ---) and the difference between the temperature 
of the reacting phase boundary and the program temperature (- - -) for a sample of 3 
mm initial radius. For the other parameters of simulation see the heading of Table 1. h (W 
IL-’ m-l) = (a) 00, @) 100, (c) 20, (d) 5, (e) 1, (f) 0.2. 
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0,02. 

e 

0. 
400 XM TlroJ,K 

Fig. 2 (continued). 

From Fig. 5, showing the effect of the thermal conductivity on this ratio, 
the A value resulting in R(0.6) = 0.703 can be determined; it is 2.2 W IC’ 
m -‘. This means that if our model process takes place in a sample of r, = 3 
mm and X = 2.2 W IS-’ m-‘, and the thermal resistance is neglected in the 
evaluation of the transformation rate, a formal order of 1 will be obtained 
instead of 2/3, the correct value. Besides, the error of n also influences the 
estimated activation energy and pre-exponential factor. 

In a similar way, a minimum effective thermal conductivity can be 
determined for a particular set of material constants, sample radius and 
experimental circumstances. If the acceptable error of the estimated n value 
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TABLE 2 

Some of the parameters characterizing peak shape and rn~~ tem~rature lag for samples 
of different initial radius and thermal conductivity (for other starting parameters see heading 
of Table 1) 

f-0 x MIR W R(0.6) 1 

(mm) (W K-’ m-‘) (K) (K) (K) 

10 1; 
20 
5 
1 

1 

0.3 

1; 
20 

5 
1 
0.2 

00 
5 
1 
0.2 
0.05 

co 
1 
0.2 
0.05 

550.5 41.1 0.730 
550.9 42.7 0.724 
552.3 47.9 0.707 
556.3 60.9 0.674 
570.5 102.2 0.632 

530.5 38.3 0.731 
530.7 38.4 0.730 
530.8 39.1 0.727 
531.4 41.3 0.719 
533.8 49.8 0.691 
542.1 73.1 0.647 

513.7 36.0 0.731 
513.8 36.3 0.729 
514.1 37.8 0.723 
515.7 43.5 0.702 
520.0 56.4 0.668 

494.3 33.6 0.731 
496.3 33.8 0.730 
496.5 34.5 0.727 
497.1 37.0 0.717 

2.5 
10.2 
29.8 
66.5 

0.3 
1.3 
4.4 

17.5 
51.6 

0.6 
2.8 

11.2 
30.8 

0.3 
1.4 
5.0 

Fig. 3. The effect of the thermal conductivity on the maximum temperature difference 
between the outer surface and the reacting phase boundary. For the parameters of simulation 
see the heading of Table 1. r. fmm) = (a) 0.3, (b) 1, (c) 3, (d) 10. 



Fig. 4. The effect of the sample radius on the maximum temperature lag. For the parameters 
of simulation see the heating of Table 1. X (W K-’ m-‘) = (a) 0.2, (b) 1, (c) 5, (d) 20, (e) 
100. 

I 

Fig. 5. The effect of the thermal conductivity on the shift of R(0.6) for a sample of 3 mm 
radius. For the other parameters of simulation see the heading of Table 1. 

TABLE 3 

The effect of thermal conductivity on the parameters of peak shape, in the case of a narrower 
peak: A’= 2~10’~ mol me2 s- ‘; E/R = 3.293 X lo4 K, r, = 3 mm (for other starting 
parameters, see the heading of Table 1) 

x R (0.6) 
(W K-’ m-‘) 

oc 548.9 21.4 0.735 - 

100 548.9 21.7 0.733 0.4 
20 549.2 22.8 0.725 2.1 
5 550.1 26.1 0.704 6.8 
1 553.6 36.4 0.662 21.7 
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TABLE 4 

The effect of heating rate on some parameters characterizing peak shape and the maximum 
temperature lag, in the case of r,, =1 mm sample radius (for other starting parameters of 
simulation, see the heading of Table 1) 

B h MIR W R (0.6) I 

(K s-l) (W K-’ m-‘) (K) (K) (K) 
l/12 cc 503.5 34.6 0.731 - 

5 503.6 34.8 0.730 0.3 
1 503.7 35.6 0.727 1.5 

0.2 504.6 38.9 0.713 6.5 

l/3 

1 

co 524.2 37.4 0.731 - 

5 524.4 38.1 0.728 1.1 
1 525.1 40.7 0.718 5.0 

0.2 527.8 50.0 0.688 18.9 

; 541.9 542.0 40.4 39.8 0.730 0.728 0.8 
5 542.4 41.8 0.723 3.0 
1 544.0 48.0 0.702 12.2 

is 0.1, the R(0.6) ratio should not be lower than 0.723, being 0.008 lower 
than the value belonging to n = 2/3. Starting from this difference, A,, = 7.9 
W K-’ m-l is obtained from the curve of Fig. 5. If the thermal conductivity 

10 20 30 40 50 60 
p, Km&l 

Fig. 6. The effect of the heating rate on the shift of W (related to peak width), in the case of 
r, = 1 mm sample radius. For the other starting parameters, see the heading of Table 1. X (W 
K-’ m-r) = (a) 0.2, (b) 1, (c) 5. 
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exceeds this value, neglecting the thermal resistance (i.e. an 
on eqns. (1) and (2)) will result in an error of the estimated 
for the given set of material and experimental parameters. 

estimation based 
n lower than 0.1 

The shape of the peak is also affected by the activation energy and the 
pre-exponential factor, determining the width of the temperature range of 
the transformation. The values in Table 3, belonging to narrower curves, can 
be compared to those in Table 1. As is expected, the distorting effect of heat 
transport becomes stronger with decreasing width of the peak. 

The dependence of peak shape on the heating rate was also studied. 
Results obtained with r. = 1 mm and different rates are included in Table 4. 
An empirical parameter related to peak width is illustrated in Fig. 6 as a 
function of the heating rate. 

The application of dimension analysis to characterize the effect of heat trans- 
port inside the sample 

The results described in the preceding section show the effect of individ- 
ual material and experimental parameters on the peak shape, provided the 
other parameters are fixed. Let us consider if these relationships can be 
formulated generally. In other words, we are seeking answers to the follow- 
ing. 
(a) Is it possible to estimate the maximum difference between the tempera- 

ture of the outer surface and that of the reacting phase boundary if the 
material and experimental parameters are known? 

(b) It is possible to specify the approximate range of material and experi- 
mental parameters allowing the kinetic constants of the reaction to be 
estimated without considering the heat transport (with a given error 
bound)? 

Dimension analysis was applied to solve these problems. 
First, let us consider the maximum temperature lag 1 as a function of the 

sample size, the thermal conductivity, the heating rate, the heat effect and 
the width of the temperature range of the reaction. The last two factors may 
be described by the heat of reaction in unit sample volume, 

*=$ (14) 

and the reciprocal of the maximum transformation rate IV. Besides, let us 
assume that the relationship can be expressed as 

I= const r~WbHcAdpe (15) 

The dimensions of the parameters of the right-hand side are [L], [T], 
[ ELB3], [ EJ~-‘T-~I~-‘] and [ TB-‘I, respectively. The four basic dimensions 
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offer four equations for the exponents u-e: 

[T]: l=b+e-d 06) 
[L]: O=a-3c-d (17) 

PI : O=d+e (18) 
[El: O=c+d (19) 

Consequently, there is one independent exponent. Let us choose c, then 
the others can be expressed with it. We get a = 2c, b = 1 - 2c, d = -c and 
e = c. Taking the character of the model process into account, the maximum 
temperature lag is expected to be (nearly) proportional to the heat of 
reaction, which corresponds to c = 1. Using this value, eqn. (15) becomes 

rif@ 
I = const Wh (20) 

Equation (20) can be verified by calculating ZWA/( rzH/?) from the data of 
different simulated curves, when both the chemical reaction and the heat 
transport play a significant role in the overall rate of the transformation. 
The results of these calculations (see Table 5) show that eqn. (20) is 
approximately valid, its constant being about 0.30. 

The range of parameters allowing the kinetic constants to be estimated 
without considering the heat transport can be approached in a similar way. 
In the preceding section (“The effect of sample size . . . “) a minimum 
thermal conductivity has been defined allowing the estimation of the formal 
order with Sn = 0.1 maximum error. Now let us express hd,, with sample 
radius, width of the reaction temperature range, heat effect and heating rate 

h,, = const’ r$Wb‘Hc]6d’ (21) 

Of course, any other parameter of eqn. (21) could be chosen as the explicit 
variable, i.e. instead of Ati, rOMax or Wti, etc., could be expressed. 

As the number of unknown exponents is equal to that of the basic 
dimensions, equations similar to (16)-(19) can be solved, and a’ = 2, b’ = 
- 2, c’ = d’ = 1 is obtained. Substituting these values into eqn. (21) and 
rearranging yields 

X&W2 

r:HP 
= const’ (22) 

The constant on the right-hand side of eqn. (22) should be determined 
from each series of curves simulated with different thermal conductivity and 
other parameters fixed. X,, can be determined from R(0.6) vs. log A 
diagrams as shown in Fig. 5, similarly, W is obtained from W vs. log X 
diagrams created from the data of Tables 2-4. The results of these calcula- 
tions are included in Table 6; the values of the constant in question are in 
the range 3.8-4.3, confirming the approximate validity of eqn. (22). Of 
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TABLE 5 

Values of the constant of eqn. (20) calculated from different series of simulated curves 

(a) Peaks generated with different radius and thermal conductivity: 
A’ = 4.72 x 1012 mol rnT2 s-‘; E/R = 1.67 x lo4 K; R = l/6 K s-l 

h IWX 
(WK-‘m-l) - HC?R 

103r0 (m) = 10 3 1 0.3 

100 0.32 0.32 
20 0.29 0.33 0.22 

5 027 0.30 0.33 0.56 
1 0.29 0.32 0.34 
0.2 0.29 0.32 
0.05 0.26 0.31 

(b) Peaks generated with different heating rate: 
A’ = 4.72 x 1012 mol rnT2 s-‘; E/R = 1.67 x lo4 K; r,, =10e3 m 

h 
(W K-l m-l) 

IWA 
- &?I3 

R(K s-l) = l/12 l/6 l/3 1 

20 0.32 
5 0.31 0.33 0.31 0.31 
1 0.32 0.32 0.31 0.29 
0.2 0.30 0.29 0.28 

(c) Narrower peaks generated with different thermal conductivity: 
1I’=2xlO~~ molm-2 s- r; E/R=3.293x104K;j3=1/6Ks-‘; r,,=3X10-3m 

X(W K-’ m-‘) 100 20 5 1 

1wx 

Hc?P 
0.29 0.32 0.30 0.27 

course, instead of a maximum acceptable thermal conductivity, a maximum 
sample size or heat of reaction may also be interesting. So, in general, we 
can write 

= const’ 

where the actual value depends on the selected error limit. 
As an example, let us estimate the maximum allowable sample size 

belonging to 0.1 error of formal order when we can use 4.0 as the value of 
const’ of eqn. (23). Let the parameters be AH = 100 kJ mol-‘, p = 2000 kg 
rnw3, M = 0.1 kg mol-‘, A = 1 W K-l m-l, W = 40 K and p = l/6 K s-l. 
Then, from eqns. (14) and (23), r, = 1.1 mm is obtained corresponding to a 
maximum sample mass of 11 mg. 



329 

TABLE 6 

The values of the constant of eqn. (22) and the maximum allowable I/W ratio calculated 
from different series of simulated curves 

(a) Peaks generated with different radius and thermal conductivity: 
A’=4.72~10’~molm-~s-‘; E/R=1.67~10~K;/3=1/6Ks-’ 

103r0 (m) 10 3 1 0.3 
X,, (W K-’ m-‘) 76 7.9 1.0 0.089 
h&W2 

I%% 
4.2 4.3 4.3 3.8 

(j&x (RI) 7.2 8.2 7.4 8.7 

(b) Peaks generated with different heating rate: 
A’= 4.72 x 1012 mol me2 s-l; E/R = 1.67 x lo4 K, r. = 10e3 m 

B W s-l) l/12 l/6 l/3 1 
Xti (TV K-’ m-‘) 0.50 1.0 1.8 4.5 

Lll,W2 
W% 

4.0 4.3 4.2 4.0 

7.7 7.4 7.6 7.8 

(c) Narrower peaks generated with different thermal conductivity: 
A’= 2x 1o25 mol mm2 s-l; E/R = 3.293 X lo4 K; /3 =1/6 K s-‘; r,, = 3 X 10e3 m 

Xtin = 23 W K-’ m-‘; 
h .w2 
= = 3.9; (&= = 8.4% 

Hd2rB 

Combining eqns. (20) and (23), the criterion of accurate estimation of 
kinetic parameters can also be expressed as the ratio of the maximum 
temperature lag and-the width of the reaction temperature range I/W. The 
values of this ratio also show good agreement for the different sets of 
simulated curves (see Table 6). Thus, for a given accuracy of the estimation 
based on eqns. (l), (2) or (3), the maximum difference between the tempera- 
ture of the reacting interface and the program temperature should not 
exceed a certain percentage of the width of the reaction temperature range 
(in our example, 7-S). 

Finally, some remarks can be made on the possibility of generalizing the 
conclusions of the present discussion. Taking into account the simplifica- 
tions of the model and the special geometric conditions, the conclusions 
above may only be approximately valid for real transformations governed by 
the rate of a phase boundary reaction and the heat transport inside the 
sample. Certainly, the criteria of accurate estimations without considering 
heat transport are somewhat stricter than those obtained in the present 
calculations because of the other factors neglected here. However, their 
order of magnitude can be expected to be correct for a number of processes 
taking place under the usual circumstances of thermal analysis. 
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NOTATION 

t 

r 

r0 

V 

T 

T(ro) 
(11 

f(a) 
A 
A’ 
E 
R 
AH 
H 

; 
ii4 

9 

time 
radius of the reacting phase boundary at time t 

sample radius 
the velocity of the reacting phase boundary at time t 

temperature of reacting phase boundary at time t 

temperature at the external surface of the sample at time t 

reacted fraction 
a function of cx in the rate equation 
pre-exponential factor (s-l) see eqns. (1) and (4) 
pre-exponential factor (mol mS2 s-l) see eqn. (3) 
activation energy 
gas constant 
the heat of reaction (J mol-‘) 
the heat of reaciton related to unit volume (J mP3) 
formal order of reaction 
number of moles 
molar mass of the starting material 
density of the starting material 

&,, &heat flux, expressed by the rate of the reaction and heat conduction, 
respectively 

P heating rate 
A, A,, thermal conductivity and its minimum value providing a selected 

accuracy of estimated kinetic parameters, see eqn. (21) 
1 the maximum difference between the temperature of the reacting 

interface and the program temperature 

Parameters of the iteration procedure 

T’(ro), t’, 
v’, r’ the values of T( ro), T, v and r at time t - At 

T the temperature of the reacting phase boundary calculated in 
the i-th iteration cycle 

e a preselected small temperature difference 

Empirical parameters characterizing the shape of the peak (see also refs. 
15-l 7) 

TW=) program temperature at the maximum da/d t 

T(a) program temperature relevant to (Y 
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W 
4M=) 
R(0.6) 
u 

T(d - T(d 
the first relative moment of the peak, i.e. the program tempera- 
ture belonging to the center of gravity of the peak 
the reciprocal of the maximum rate, [dcu/dT( r,,)] & 
the reacted fraction at the peak maximum 
AT(0.6, 0.2)/AT(O.8, 0.2) 
AT(0.8, 0.2)/W 

Symbols used in dimension analysis 

[L] length 
[e] time 
[T] temperature 

WI energy 
a, b, G 
d, e exponents in eqn. (15) 
a’, b’, 
c’, d’ exponents in eqn. (21) 
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