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ABSTRACT 

In a previous paper we analysed the influence of deconvolution in the selection of the 
reaction mechanism f(a) corresponding to the kinetics of a process. In this article we 
determine the kinetic parameters with both the direct and deconvoluted signals using the 
Kissinger, Ozawa, Coats and Redfern, and Piloyan methods, and one based on the Avrami 
equation. 

INTRODUCTION 

In a previous article [l] we analysed the influence of standard inverse 
filtering on the determination of the function f(a) corresponding to the 
kinetics of a process. As an example, the III + I transition of KNO, at 
atmospheric pressure was studied, using graphical and analytical methods to 
choose f(a). We have verified that the three functions chosen were more 
accurate for the deconvoluted thermograms than for the direct ones. Filter- 
ing the thermograms we obtain different values for the activation energy, E. 

The purpose of this paper is to determine the equation of the reaction rate 
from kinetic parameters obtained from direct and filtered signals. A discus- 
sion is made of the different results obtained for the III + I transition of 
KNO,. Five methods using dynamic techniques have been used for evaluat- 
ing the kinetics of solid-state reactions. For the Kissinger [2] and Ozawa [3] 
methods, it is necessary to work with recordings at different heating rates, p. 
The other three methods require only one thermogram: the Coats and 
Redfern method [4], one based on the Avrami equation [5] and the Piloyan 
method [6], which uses differential signals. Of the five methods, those of 
Kissinger and Piloyan have been specifically developed for the technique 
used in this study (DTA). 
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EXPERIMENTAL 

The experimental conditions under which the thermograms have been 
obtained for the III -+ I transition of KNO, at atmospheric pressure are: 
p = 3.3, 5.2, 7.3 and 9.2 K mm’; amplification of the differential signal, 
5000; sampling period, 2 s [l]. 

RESULTS AND DISCUSSION 

Kissinger method 

With this method it is possible to determine the activation energy and the 
frequency factor (or pre-exponential factor) of the process from the equation 

ln( p/Tpz) = ln( &R/E) - E/( RT,) (I) 

where E, K,, Tp and R are the activation energy, the frequency factor, the 
peak temperature and the universal gas constant, respectively. Plotting the 
first part of eqn. (1) against l/T, gives a straight line, its slope giving E and 
its value at the origin giving K,. The value of E obtained with this method is 
independent of p. The values of E and K, obtained from the direct readings 
are: E = 207 kJ mol-‘, K = 8 X 1O24 s-i, 
filtered registers are: E* =0306 kJ mol-‘, 

r = -0.9823; and from the 
K,* = 103* s-l, r* = -0.9768. 

Note that E is 50% greater for the deconvoluted thermograms. Figure 1 
shows eqn. (1) for both the direct and filtered thermograms. 

Fig. 1. Representation of eqn. (1) for the direct (+) and deconvoluted (*) readings. 

9 
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TABLE 1 

Activation energies and regression coefficients for the direct and deconvoluted (*) readings, 
obtained for different values of (1 - a) and using Ozawa’s method 

1-a E (kJ mol-‘) E* (kJ mol-‘) AE(W) r r* 

0.2 325 498 53 - 0.9880 - 0.9825 
0.4 383 559 46 - 0.9861 - 0.9785 
0.6 433 620 43 - 0.9819 - 0.9728 
0.8 502 688 39 - 0.9777 - 0.9607 

AE(S) = lOO( E* - E)/E 

Ozawa method 

The basis of this method is that for a changing j3, different temperatures 
correspond to each specific value of (1 - a). The relation between p and T 
given by Ozawa for each value of (1 - cx) is 

log p + 0.4567E/RT = constant (2) 

We have used this method for the following values of (1 - (Y): 0.2, 0.4, 0.6, 
0.8. Table 1 shows the values obtained for E. 

At the end of the peak it can be observed that E decreases with (1 - a). 
This variation is of the order of 50% for the direct thermograms and 40% for 
the filtered ones. The effect of filtering is greater for values of E correspond- 
ing to the end of the peak (1 - (Y = 0.2). On average, E varies 45% between 
the direct and deconvoluted thermograms. 

Piloyan method 

According to Piloyan et al. [6], if 0.05 5 (Y s 0.8 and j3 s 20 K min-’ then 
the following relation holds: 

ln(AT)=C-E/(RT) (3) 

where AT is the differential signal (thermogram) and C is a constant. In the 

TABLE 2 

Values of the activation energy obtained with the method of Piloyan, corresponding to direct 
and filtered (*) thermograms 

p (K min-‘) E (kJ mol-‘) E* (kJ mol-‘) AE (“a) 

3.3 550 539 -2 
5.2 367 408 11 
7.3 324 334 3 
9.2 259 344 33 
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present case for (Y > 0.45 the slope of eqn. (3) changes sign. We have used 
this method for values of a between 0.05 and 0.45. In Table 2 we present the 
average values of E for each /3. 

The regression coefficients are smaller in this case and vary between 
-0.9378 and -0.9635 for the direct thermograms and between -0.9002 
and -0.9654 for the filtered thermograms. 

E varies greatly as a function of /? mainly for the direct thermograms. 
These variations are relatively small for one p value, with the one exception 
of p = 9.2 K mm’, comparing direct and filtered readings. 

Coats and Redfern method 

This was initially developed for f(a) functions of the type f( CX) = (1 
Expressions relating this function with the kinetic parameters are: 

ln1 -(l -ay 
T*(l - n) 

=ln[g(l--%)I--&forn+l 

and 

- - a)“. 

(4) 

(5) 

We have used this method for the two kinds of thermograms, but only for 
n = 1 and n = 2/3, which correspond to two of the three f(a) functions 
chosen to represent the III + I transition of KNO, [l]. Table 3 shows the 
average values of the kinetic parameters for each p and the two values of n. 

Although E varies greatly with p, in this case the variations are also more 
significant for the direct rather than for the deconvoluted thermograms. 

TABLE 3 

Activation energy and frequency factor for the direct and filtered (*) readings, obtained with 
the method of Coats and Redfern, for f( IX) = 1 - OL and for f( (Y) = (1 - (Y)~/~ 

P E ko r E* ‘4 r* AE 

(K min-‘) (kJ mol-‘) (s-l) (kJ mol-‘) (s-l) (W 

n=l 
3.3 855 
5.2 612 
7.3 501 
9.2 411 
n = 2/3 
3.3 768 
5.2 542 
7.3 443 
9.2 363 

> 10’~ 
10’2-10” 
lo=--106’ 
loas-1051 

109’-1098 - 0.9926 911 
106’-1069 - 0.9905 715 
1os4 -1056 - 0.9894 592 
1042-1049 - 0.9872 523 

- 0.9962 1025 
- 0.9936 791 
- 0.9935 668 
-0.9918 590 

> lO’@l 
1 lo’O” 
lo’s-los6 
106’-10’4 

> lo’W - 0.9945 18 
10*9-lo94 - 0.9924 32 
10’1-10” - 0.9923 34 
1063-1069 - 0.9904 44 

- 0.9973 20 
- 0.9954 29 
- 0.9957 33 
- 0.9943 44 
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Avrami equation 

According to the literature [5], this equation is the most convenient for 
representing phase transitions under isothermal conditions. From Avrami’s 

equation 

c1=1 -exp{ -[kOtexp(-E/RT)]‘} 

and considering t = ( T - T,)/p (where T, 

= ln( k,/P) - E/RT 

(6) 

is the initial peak temperature) 

(7) 

For q = 1.5 in eqn. (7) the corresponding f( CX) function is 

f(a) = (1 - a)[ -ln(l - ‘~)]l’~ (8) 

This is one of the functions chosen [l] for representing the process studied. 
We have used eqn. (7) in all the measurements, direct and deconvoluted, for 
values of (Y between 0.2 and 0.8. The average values of E are given in Table 
4. 

A graphical representation of eqn. (7) with q = 1.5 appears in Fig. 2. 
Variations of E are small and increase with p in both thermograms. The 

changes of E with heating rate, /3, are smaller for the filtered thermograms. 
Therefore, eqn. (7) is better adjusted to the deconvoluted data. 

With all the pairs of values E, k, we have verified that a compensation 
effect occurs. It is given by the equations 

In k, = 0.282E - 2.16; r = 0.9976 (direct thermograms) 

In k,* = 0.288E* - 2.07; r* = 0.9989 (filtered thermograms) 

where k, is in s-r and E in kJ mol-‘. Using these equations we have 
calculated k, and k,* from values of E determined by methods not giving 
the frequency factor directly (Ozawa, Piloyan). Considering that the accepted 
values of k, for solid-state processes are in the range 10’2-10’8 s-l, 
acceptable frequency factors are calculated by the Kissinger method and the 
Avrami equation. 

TABLE 4 

Activation energy and frequency factor obtained from eqn. (7) with q = 1.5, for the direct and 
deconvoluted thermograms 

P E ko r E* kc7 r* AE 

(K min-‘) (kJ mol-‘) (SC’) (kJ mol-‘) (s-l) (%) 

3.3 212 10*4-1028 - 0.9987 229 1026-1030 -0.9998 8 
5.2 121 10’4-10’5 - 0.9946 136 10’5-10’8 -0.9986 12 
7.3 101 1o’O -10’2 -0.9955 111 lo’* -0.9993 10 
9.2 81 108-lo9 -0.9901 95 lo*-10” - 0.9994 17 
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Fig. 2. Representation of eqn. (7) with q = 1.5 for the direct and deconvoluted (*) thermo- 
grams. Heating rate p = 3.3 K min-’ (a) and p = 9.2 K min-’ (b). The marks on the graphs 
indicate (Y = 0.2 and (Y = 0.8. 

Furthermore, the smallest dependence of E on p is desirable. With all 
methods giving E from j3, the values of E obtained from the filtered 
thermograms vary less with p than those obtained from the direct readings. 

In order to obtain from Avrami’s equation one single value for E, more 
comparable to that of an isothermal regime, a simple linear extrapolation of 
the values of E at p = 0 has been performed. We have obtained the 
following extrapolated values: 

E = 259 kJ mol-‘; E* = 277 kJ mol-’ 

If we compare these values with those found with the Kissinger method, the 
agreement is clearly better in the case of the filtered signals, which allows the 
activation energy to be determined within a reasonable uncertainty interval. 

With the mean value of E obtained by the Kissinger method and the 
extrapolation at p = 0, we have calculated the frequency factor, making use 
of the compensation effect. Accepting eqn. (8) as f(a), the equation for the 
reaction rate of the transition studied becomes (T in K) 

da/dt=2X lO*‘exp 
2.78 x lo4 

T 
i 

(1 - (Y)[ -ln(l - ~~y)]i’~ 

for the direct signals, and 

da/dt=2~ 1O35 exp 
3.50 x lo4 

T (1 - a)[ -ln(l - LX)]~‘~ 

for the filtered signals. 
We can therefore conclude that use of the deconvoluted thermograms with 

a simple technique such as standard inverse filtering produces good results. 
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It improves the quality of the adjustments in search of an adequate f(a) 
function and, therefore, of the process studied itself. Moreover, E is 
influenced less by the heating rate when filtered instead of direct thermo- 
grams are used. If the values of E corresponding to frequency factors 
unacceptable for solid-state processes are discarded, then extrapolation to 
zero heating rate of the values given by Avrami’s equation presents a better 
concordance with values obtained using Kissinger’s method with filtered 
thermograms. We believe that this allows a value for the activation energy to 
be obtained with notably lower uncertainty. 
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