EXCESS ENTHALPIES OF BINARY MIXTURES FOR 1,3-CYCLOHEXADIENE AND 1,4-CYCLOHEXADIENE + CYCLOHEXANE, + n-HEXANE AND + BENZENE

T.M. LETCHER and R.C. BAXTER

Department of Chemistry, Rhodes University, Grahamstown (South Africa) (Received 19 November 1985)

ABSTRACT

Molar excess enthalpies H_m^E were determined in an LKB flow calorimeter over the whole range of composition for all the binary mixtures of 1,3-cyclohexadiene and 1,4-cyclohexadiene + cyclohexane, + n-hexane and + benzene at 298.15 K. The position of the double bonds in cyclohexadiene has an effect on the H_m^E of mixing.

INTRODUCTION

The molar excess volumes V_m^E at 298.15 K for the binary mixtures of 1,3-cyclohexadiene and 1,4-cyclohexadiene + cyclohexane, + n-hexane and + benzene have been reported by the author [1,2]. In this work we present H_m^E measurements for these mixtures at 298.15 K. The results, together with H_m^E results for related systems, are discussed in terms of $\pi \cdots \pi$ interactions. The patterns thus generated are compared with the patterns in the V_m^E results [1,2].

EXPERIMENTAL

Cyclohexane, n-hexane and benzene were purified as previously described [2]. The cyclodienes were purified by repeated distillation. The samples of 1,3-cyclohexadiene and 1,4-cyclohexadiene were both used within 3 h of distillation and were used without stabilisers. They were kept in brown bottles to limit the exposure to sunlight. Densities of 0.8401 g cm⁻³ and 0.85103 g cm⁻³ were obtained for the 1,3-cyclohexadiene and 1,4-cyclohexadiene samples respectively. The density measurement for 1,3-cyclohexadiene as reported by Woycicki [3] was very different (0.8353 g cm⁻³). Repeated spinning band distillation confirmed the density of 0.8402 g cm⁻³ on our samples. Analysis by GLC showed that impurities in the two cyclodienes were not greater than 0.5 mol per cent.

The H^E measurements were determined using a commercial LKB 2107 flow calorimeter coupled with LKB Varioperpex peristaltic pumps. The technique has been described [4].

RESULTS

Results for H_m^E are given in Table 1 together with deviations δH_m^E

TABLE 1

Excess enthalpy H_m^E for 1,3-cyclohexadiene and 1,4-cyclohexadiene + cyclohexane, + n-hexane and + benzene at 298.15 K

x	H_m^E	δH_m^E	x	H_m^E	δH_m^E	x	H_m^E	δH_m^E		
$xc-C_6H$	$I_{12} + (1 - x)$	$1,3-c-C_6H_8$								
0.0925	121.1	-0.3	0.4261	327.7	0.2	0.7022	272.8	-0.5		
0.1990	225.0	1.2	0.4715	330.9	- 0.7	0.7876	217.8	-0.8		
0.3186	295.8	-0.7	0.5536	327.8	2.0	0.8819	137.0	0.3		
0.3722	315.1	-0.8	0.6032	314.2	0.0					
$xc-C_6H_{12} + (1-x)1,4-c-C_6H_8$										
0.1102	126.9	-0.1	0.5089	375.0	2.6	0.7624	267.1	- 2.9		
0.2505	260.7	-0.4	0.5482	370.5	-0.2	0.8324	207.6	1.7		
0.3114	305.1	0.0	0.6416	344.7	- 0.8	0.8917	140.0	0.0		
0.4542	366.1	-0.1								
$x n-C_6 H_{14} + (1-x)1, 3-c-C_6 H_8$										
0.1347	229.7	0.6	0.4496	435.6	-0.4	0.5678	421.7	0.1		
0.2211	325.2	-1.4	0.4736	436.9	0.2	0.7188	340.1	-0.9		
0.3334	405.1	0.1	0.5652	424.0	1.6	0.8024	266.9	0.2		
$x n - C_6 H_{14} + (1 - x) 1, 4 - c - C_6 H_8$										
0.1837	300.9	-0.4	0.4441	441.4	-0.9	0.6807	364.5	-1.2		
0.2656	279.7	1.5	0.4955	443.3	-0.8	0.7921	270.1	-0.3		
0.2915	395.8	-0.4	0.5712	427.7	2.9	0.9328	100.9	0.1		
0.3612	429.8	-0.6								
xc-C ₆ H	$I_6 + (1 - x)^2$	1,3-c-C ₆ H ₈								
0.0927	42.4	-0.2	0.4434	127.2	-0.4	0.6735	116.3	0.2		
0.1967	80.9	0.5	0.4863	129.0	-0.6	0.7969	86.0	-0.5		
0.2914	105.6	-0.1	0.5577	128.8	0.1	0.8643	63.5	0.3		
0.3715	120.5	0.5	0.6008	125.7	0.1					
$xc-C_6H$	$I_6 + (1 - x)$	$1,4-c-C_6H_8$								
0.2030	33.3	-1.2	0.5598	85.0	-0.5	0.8063	55.3	-1.3		
0.2983	57.0	2.2	0.6008	86.7	-0.2	0.8116	55.6	0.1		
0.3811	69.9	0.0	0.6152	84.3	0.1	0.8661	42.4	0.9		
0.4481	79.3	0.4	0.6829	78.2	-0.4					

values at 296.15 K of coefficients A, for eqn. (1)						
Mixture	$\begin{array}{c} A_0 \\ (J \text{ mol}^{-1}) \end{array}$	$\begin{array}{c} A_1 \\ (J \text{ mol}^{-1}) \end{array}$	$\begin{array}{c} A_2 \\ (\text{J mol}^{-1}) \end{array}$			
xc-C ₆ H ₁₂						
$+(1-x)1,3-c-C_{6}H_{8}$	1325.9	80.5	81.8			
$+(1-x)1,4-c-C_6H_8$	1488.2	- 102.6	- 187.1			
$xc-C_6H_{14}$						
$+(1-x)1,3-c-C_6H_8$	1741.1	191.8	156.9			
$+(1-x)1,4-c-C_6H_8$	1773.7	295.9	120.9			
xc-C ₆ H ₆						
$+(1-x)1,3-c-C_6H_8$	519.2	- 21.7	7.4			
$+(1-x)1,4-c-C_6H_8$	333.6	-126.5	- 127.6			

Values at 298.15 K of coefficients A, for eqn. (1)

calculated from the smoothing equation

$$\delta H_m^E(\mathbf{J} \bmod^{-1}) = H_m^E(\mathbf{J} \bmod^{-1}) - x(1-x) \sum_{r=0}^{r=2} A_r(1-2x)^r$$
(1)

where x denotes the mol fraction. The coefficients A_r are given in Table 2.

DISCUSSION

TABLE 2

Results for H_m^E 1,3-cyclohexadiene and 1,4-cyclohexadiene + cyclohexane have been reported by Woycicki [3] and are higher than the results obtained in this study. $H_m^E(x = 0.5)$ for the 1,3-cyclohexadiene mixture is 359 J mol⁻¹ (as opposed to 331 J mol⁻¹ reported here) and 423 J mol⁻¹ for the 1,4-cyclohexadiene mixture, compared with 372 J mol⁻¹ in this work).

Results for $H_m^E(x = 0.5)$ for mixtures of cyclohexane + cyclohexene (92 J mol⁻¹) [3], +1,3-cyclohexadiene (331 J mol⁻¹), +1,4-cyclohexadiene (372 J mol⁻¹) and + benzene (800 J mol⁻¹) [5] show a pattern which can be explained by the breakdown of $\pi \cdots \pi$ interactions on mixing the double-bonded compounds with cyclohexane.

Results for $V_m^E(x=0.5)$ [1,2] for cyclohexane + cyclohexene (0.097 cm³ mol⁻¹), +1,3-cyclohexadiene (0.311 cm³ mol⁻¹), +1,4-cyclohexadiene (0.360 cm³ mol⁻¹) and + benzene (0.652 cm³ mol⁻¹) reflect the same explanation if volume expansion is considered to be related to the strength of dissociation.

Results for $H_m^E(x = 0.5)$ for n-hexane + cyclohexane (215 J mol⁻¹) [6], + cyclohexene (245 J mol⁻¹) [7], +1,3-cyclohexadiene (436 J mol⁻¹), +1,4-cyclohexadiene (443 J mol⁻¹) and + benzene (897 J mol⁻¹) [8] show a similar trend to that seen in the above cyclohexane mixtures. V_m^E results [1,2] for those mixtures, however, do not form a simple pattern. Results for $H_m^E(x = 0.5)$ for benzene + cyclohexane (800 J mol⁻¹) [5], + cyclohexane (389 J mol⁻¹) [7], +1,3-cyclohexadiene (130 J mol⁻¹) and +1,4-cyclohexadiene (83 J mol⁻¹) show a trend which reflects an increasing association of the second compound with benzene. This is related to the increasing number of double bonds.

Again results for $V_m^E(x = 0.5)$ [1,2] for benzene + cyclohexane (0.652 cm³ mol⁻¹), + cyclohexene (0.245 cm³ mol⁻¹), + 1,3-cyclohexadiene (0.072 cm³ mol⁻¹) and 1,4-cyclohexadiene (0.042 cm³ mol⁻¹) support the same hypothesis.

ACKNOWLEDGEMENT

The authors wish to thank the CSIR (South Africa) for financial support.

REFERENCES

- 1 T.M. Letcher, J. Chem. Thermodyn., 7 (1975) 205.
- 2 T.M. Letcher, J. Chem. Thermodyn., 9 (1977) 661.
- 3 W. Woycicki, J. Chem. Thermodyn., 12 (1980) 165.
- 4 T.M. Letcher and B.W.H. Scoones, J. Chem. Thermodyn., 14 (1982) 703.
- 5 R.J. Hill and F.L. Swinton, J. Chem. Thermodyn., 12 (1980) 489.
- 6 R.L. Arenosa, C. Menduiña, G. Tardajos and M. Diaz Peña, Chem. Thermodyn., 11 (1979) 159.
- 7 T.M. Letcher and J. Sack, J.S. Afr. Chem. Inst., 28 (1975) 316.
- 8 M.I. Paz-Andrade, M. Regueriro, M.C. Baluja, E. Jimenez and C. Hernandez, Acta Cient. Compostelana, 7 (1970) 147.