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ABSTRACT 

The fundamental equations for non-isothermal kinetics of various processes are reviewed. 
They are the same in their mathematical form as the isothermal kinetic equation, and time is 
replaced by generalized time. The independent variables contained in the equations are only 
generalized times, which determine the conversion of the process. The usefulness of this 
concept of generalized times is discussed, and they are found to be useful for the systematic 
description of non-isothermal processes as well as for prediction and control. The essential 
prerequisites to sound kinetic analysis of thermoanalytical data are briefly discussed. 

INTRODUCTION 

In 1925, Akahira and his co-worker [l] published papers on the kinetic 
analysis of thermogravimetric data, and they made an attempt to evaluate 
the thermal endurance of electrical insulating materials with a Honda 
thermobalance. It appears to be the first attempt to obtain kinetic informa- 
tion by thermoanalytical methods. However, kinetic analysis was not devel- 
oped further from this pioneering work, presumably due to the lack of need. 

It was since the 1960s that kinetic analysis was widely applied to thermo- 
analytical data, especially since publication of the paper by Freeman and 
Carroll [2]. This is because thermoanalytical tools became popular in this 
period and thermal analysis became easily applicable to various fields of 
science and technology, since apparatuses with automatic control and re- 
cording became commercially available in this period. 

Since then, numerous methods have been proposed for the kinetic analy- 
sis of thermoanalytical data. However, most of them are based on limited 
kinetic models, and hence their applicability is limited. In spite of this 
limitation, they have often been applied to processes which are not within 
their limits, and they often led to false results. One example of these cases is 
shown in Fig. 1, where the method proposed by Anderson and Freeman [3] 
was applied by the present author to thermogravimetric data of polycapro- 
lactam in vacuum. By this method, it is deduced from the results that the 
kinetic parameters are dependent on the heating rate. 

0040-6031/86/$03.50 0 1986 Elsevier Science Publishers B.V. 



-0.5 ’ I I I 1 I I 
0 0.2 04 0.6 

A log (I- Cl 

Fig. 1. Anderson-Freeman plot of thermogravimetric data of polycaprolactam in vacuum. 
The heating rates are indicated in the figure. 

In contrast with this, the method proposed by the present author led to a 
mechanism of random scission in the main chain of the polymer; the 
elucidated mechanism is consistent with previous isothermal observations 
and the estimated kinetic parameters are constant and independent of 
heating rate [4]. This was the very beginning when the present author 
became deeply conscious of the methods of kinetic analysis of thermoana- 
lytical data and their models, on which the methods are derived. Since then, 
the present author has developed the non-isothermal kinetics of various 
processes and proposed methods derived from non-isothermal kinetics. By 
using theoretically calculated thermoanalytical data, he also demonstrated 
the falsity of results derived by misapplication of methods to processes 
beyond their range of applicability [5]. Many methods have been proposed 
for kinetic analysis; however, the mechanism of random scission in the main 
chain of a polymer, for instance, is still beyond the range of most of the 
methods proposed till now. 

To elucidate the real kinetic mechanism and to obtain the real kinetic 
parameters, the method should be applicable as widely as possible to various 
processes, and a certain procedure should be included in the method to 
check the validity of the method in the particular application. Furthermore, 
it is desirable to develop non-isothermal kinetics for various kinetic models, 
because thermoanalytical data can be clearly analyzed by non-isothermal 
kinetics. 

Non-isothermal kinetics are also very useful beside thermal analysis, 
because many natural processes proceed non-isothermally, for instance, in 
industrial processes, as well as in practical processes, though kinetic investi- 
gation has been made isothermally and it has scarcely been applied to 
non-isothermal processes except in thermal analysis. 

In this paper, non-isothermal kinetics are reviewed with a focus on a very 
useful concept, generalized time. These non-isothermal kinetic theories can 
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be applied to normal chemical reactions, diffusion, nucleation-and-growth 
processes, and generalized time is very effective for systematically describing 
the kinetic aspects of these non-isothermal processes as well as isothermal 
processes. Non-isothermal processes can also be predicted by applying this 
concept of generalized time. 

GENERALIZED TIME 

Usually, the fundamental isothermal kinetic equation for the unit process 
is in a form such as that written below: 

2 = kf([) (1) 

where 5, t, k and f(t) are, respectively, the fraction of formed species, the 
time, the rate constant and a function of 5. Because the rate constant is 
usually dependent on temperature, the above equation can be transformed 
for non-isothermal processes by introducing the generalized time, 8 [4,6]: 

8= g(T)dt 
/ 

where the rate constant as a function of temperature is 

k = k&‘-) 
and k, is a constant independent of temperature. Thus 

(2) 

(3) 

The above equation is the fundamental kinetic equation which can be 
applied to both isothermal and non-isothermal processes, and the funda- 
mental variables contained in the equation are only the fraction of the 
formed species (or the reacting species) and the generalized time. Thus, the 
generalized time is the fundamental variable, and the fraction of the formed 
species is dependent only on this single independent variable, while the 
fraction of the formed species is dependent on the actual time and the 
temperature in the conventional isothermal equation. 

Generalized time has the dimension of time. It can be calculated if we 
know the temperature dependence of the rate constant, i.e., g(T) in eqn. (3), 
or the activation energy in the case of an Arrhenius type of temperature 
dependence. 

The concept of generalized time can also be introduced to diffusion as 
follows [ 71: 
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where 5 is the concentration of a diffusing species. This equation is the 
fundamental equation for diffusion, and it is applicable to both isothermal 
diffusion and non-isothermal diffusion. Under initial and boundary condi- 
tions, we can solve this equation quite similarly to the usual isothermal 
equation for diffusion [7]. From this equation, the method for kinetic 
analysis of thermoanalytical data of diffusion was also derived [7]. This 
equation gives us a theoretical base in considering non-isothermal kinetics of 
diffusion-controlling processes, such as some solid decompositions. 

USEFULNESS OF GENERALIZED TIME 

The fundamental non-isothermal kinetic equations (4 and 5) are very 
simple equations, in which time in the isothermal equation is only replaced 
by generalized time. Because generalized time is a single measure of the 
conversion of the process, the conversion of the process proceeding under 
various types of temperature change becomes a single function of gener- 
alized time. 

Typical examples illustrating the above principle are thermal deterioration 
of electrical insulating materials, in which temperature changes irregularly 
[8]. One example is shown in Fig. 2. Because the weight of an enamelled wire 
is a definite function of the fraction of formed species, 5, it becomes 
dependent only on generalized time. Therefore, a single master curve is 
obtained, when we plot weight against generalized time, though the tempera- 
ture was kept constant or changed linearly between two temperature limits, 
as indicated in the figure. A similar relation was also published previously 
for the thermal decomposition of urea as a latent heat thermal energy 
storage material [9]. 
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Fig. 2. Weight loss of polyvinyl formal enamelled wire versus generalized time. The deteriora- 
tion temperature is indicated in the figure, and the temperature was kept isothermally or 
linearly changed between indicated temperature limits. 



113 

Other examples are relations between dC/dl3 and C or 8 [6], which are 
volatilization of hydrochloric acid from epoxide resin [lo] and thermal 
decomposition of poly(methy1 methacrylate) in vacuum [ll]. Because the 
conversion, C, is a definite function of generalized time, a plot of dC/d0 
versus C or 8 is also a master curve systematically describing the kinetic 
aspect of the processes. 

The above examples clearly illustrate the applicability of generalized time, 
and its effectiveness in the systematic description of non-isothermal kinetics 
is also clearly demonstrated. Generalized time is only a measure of the 
conversion of processes, and it is a measure combining the effects of actual 
time and temperature on the processes. The present author has called 
generalized time by the name of “reduced time” [4], because the actual time 
is reduced to a generalized time by taking account of the accelerating effect 
of temperature. 

STOCHASTIC APPROACH 

By introducing generalized time, the non-isothermal kinetic equation for 
crystal growth from pre-existing nuclei is also easily derived [12]. The 
distance of crystal growth, r, is given, similarly to eqn. (4), as follows: 

dr dr 
dt=vor-djj=vO (6) 

where the linear growth rate, v, is a function of temperature, as given below: 

u = vog,(T) (7) 

The distance is, therefore, the integration of eqn. (6), and 

r = v,8 (8) 

In a simple example of three-dimensional growth, the crystalline fraction, 
C, is given below: 

-ln(l - C) = $77Nr3 (9) 

and 

-ln(l - C) = ;dvv,3e3 (10) 
where N is the number of existing nuclei in the unit volume. Because the 
expectancy of the crystal growth front passing over a particular point at the 
time and/or temperature, 8, is equal to the number of nuclei in a sphere, 
whose diameter and center are, respectively, r = v,8 and the particular 
point, we can get the above equation by applying Poisson’s distribution of 
the stochastic theory. 

In the case of the growth mechanism with concurrent random nucleation 
[13], the fundamental non-isothermal kinetic equation is somewhat com- 
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plicated, because the density of the nuclei, N, becomes a certain function of 
the generalized time for nucleation, which is different from the generalized 
time for crystal growth given above. 

Namely, 

dN dN -= 
dt v Or dB, = v” 

(11) 

N = v,8,(r) (12) 

where v, the rate of nucleation as a function of temperature, is 

v = vog,(T) (13) 

and e,, is the generalized time for the nucleation given below: 

The generalized time for growth at time, t, is given below: 

and 

u = uog,(T) (16) 

Thus, we obtain the following fundamental equation of three dimensional 
growth: 

-ln(l - C) = 47rvouo3 
J o~%(+s~r)2de,(~) or 

-ln(l - C) = $7vou~ 
/ 0’e&)dd&)3 

(17) 

The fundamental and non-isothermal kinetic equations for one- and two-di- 
mensional crystal growth from pre-existing nuclei can be derived easily and 
similarly to eqn. (10) [12]. In the case of concurrent nucleation and one- or 
two-dimensional crystal growth, the equations can also be derived similarly 
to eqn. (17); however, the equations applicable to kinetic analysis can only 
be obtained for case of linear heating or cooling [13], and the integration in 
eqn. (17) can be made when we know the temperature dependence of 
nucleation and growth. 

These equations can be applied, for instance, to the crystallization of 
amorphous materials. In most cases, a Kissinger plot [14] has been applied 
to processes without any rigorous considerations, but the method tends to 
lead to false results, as was correctly pointed out by Matusita and Sakka 
[15]. Because some solid reactions proceed by the mechanism of nucleation 
and growth, application of these equations to processes should also be 
considered. 

These equations are an expansion of the Johnson-Mehl-Avrami-Erofeev 
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equation for isothermal crystallization. It is very interesting to note that eqn. 
(10) is quite similar in its mathematical form to the above isothermal 
equations, in which time is replaced by generalized time. Two different 
generalized times are contained in eqn. (17), because two different unit 
processes, i.e., nucleation and growth, are involved in the process. It seems 
that multiple generalized times are, in general, contained in non-isothermal 
kinetic equations, when multiple unit processes are involved in the overall 
process, and the number of generalized times seems equal to the number of 
unit processes involved. 

Even in these processes, the independent variables contained in the 
kinetic equation are only generalized times, and they are measures of the 
conversion of the overall processes. It is also important to point out that in 
non-isothermal cases the rate of each unit process can be controlled by 
controlling the temperature change, because the accelerating effects in 
multiple generalized times are different from each other, while time is a 
common variable in isothermal processes. 

It is also to be noted that the stochastic approach applied in the 
derivation of the above kinetic fundamental equations is very useful and 
elegant. For instance, this approach can be applied for derivation of the 
non-isothermal kinetic equation of usual chemical reactions. One simple 
example is the equation for the first order reaction, and the same equation 
as eqn. (4) can be derived by the stochastic approach. Because the expected 
number of hypothetical reactions of a particular molecule is proportional to 
the generalized time, we obtain the following non-isothermal equation by 
applying Poisson’s distribution. 

-ln(l - C) = A0 (18) 

where A is the proportionality constant, which is equal to the frequency 
factor. Therefore, the stochastic approach will probably be applied to the 
derivation of the fundamental non-isothermal kinetic equations of various 
processes. 

HEATING OR COOLING MODE AND GENERALIZED TIME 

When the temperature dependence of the rate constant is known, we can 
calculate the generalized time. For the following three cases of temperature 
change, the generalized time was already calculated for an Arrhenius type 
temperature dependence [4]. 

(1) T= T,+pt (19) 

(2) l/T = l/T, + Pt (20) 

and 

(3) T= To + exp(Pt) (21) 
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where T, and j3 are the initial temperature and a constant, respectively. 
Usually, linear heating or cooling, i.e., eqn. (19), has been adopted in 

thermal analysis. However, generalized time becomes a complicated function 
of temperature, such as given by Doyle [16]. In a thermal desorption 
spectrum, heating by eqn. (20) has often been used, and generalized time is 
also not so simple as in isothermal cases, in which generalized time is 
proportional to the actual time. 

Therefore, it is desirable to investigate some other types of temperature 
change, as was pointed out by Kambe [17]. The desirable one is the 
temperature change for which a simple relation of conversion with other 
measured quantities can be obtained. If generalized time becomes propor- 
tional to temperature, the observed relation between conversion and temper- 
ature also becomes very simple similar to the isothermal relation between 
conversion and time. Hence, the temperature should be changed as follows: 

@a(T-To) (22) 
For an Arrhenius type temperature dependence, eqn. (22) holds, when the 
temperature changes as follows: 

(23) 

because for the temperature change, such as eqn. (23) 

where p is the proportionality constant. 
negligible at the initial temperature, and 
follows: 

Usually the rate of the process is 
eqn. (23) can be approximated as 

(25) 

When we adopt this type of temperature change, the kinetic analysis 
becomes very simple, because the usual method for kinetic analysis of 
isothermal data can be applied by replacing time with temperature. How- 
ever, to adopt correctly the above mode of heating or cooling, it is essential 
to know the activation energy. 

KINETIC METHODS FOR THERMOANALYTICAL DATA 

To avoid obtaining false kinetic results, we must be conscious of two 
points, i.e., the coverage of the method used in the analysis and a check of 
its applicability. 

The coverage of the applied method should be as large as possible. From 
this viewpoint, the following two points are the prerequisites. 
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(1) In thermal analysis, the measured quantities are not always propor- 
tional to the fraction of the formed species. The measured quantities must 
be in a definite function of the fraction, and the quantities should not be 
dependent on the measuring conditions, such as temperature, frequency of 
stress in mechanical thermal analysis and frequency of voltage in thermo- 
electrometry. 

(2) The starting equation, from which the method is derived, should not 
be based on a particular mechanism, such as an n-order reaction, so that it 
must not be a particular formula but a general and abstract formula, such as 
eqn. (1). 

Thus, differential methods [18], such as that proposed by Freeman and 
Carroll [2], are not appropriate methods, but integral methods, such as those 
by the present author and Flynn and Wall [19], are in accordance with the 
above prerequisites. The method proposed by Friedman [20] is also good 
from the above prerequisites, because the method is derived directly from 
the prerequisites. 

One of the problems of the integral method is a complicated mathemati- 
cal equation derived by integration of the right-hand side of eqn. (2), i.e., the 
p-function proposed by Doyle [16]. In order to avoid this complicated 
mathematical equation in the methods, the present author recommended the 
method proposed by Friedman [20], because the temperature dependence of 
the rate constant is directly observed at a given conversion in this method, 
but it needs both the data of the conversion and the rate of conversion [21]. 
However, the recent advancement of computer technology made this proce- 
dure acceptable. 

CONCLUDING REMARKS 

The concept of generalized time, in which the accelerating effect of 
temperature is taken into account, is useful and effective in systematic 
description of the various non-isothermal processes, as is clearly shown in 
this paper, because generalized time is the only independent variable in the 
fundamental non-isothermal kinetic equations. It is also very interesting that 
multiple generalized times are contained in the overall kinetic equations of 
processes where multiple unit processes are involved. This concept of 
generalized time can be used in the prediction and control of practical 
industrial processes, as well as natural processes. 

Usually, kinetic relations have been derived by integration of the rate 
equations. However, it is also shown that the stochastic approach is also very 
effective in the derivation. This approach will probably be applied to derive 
the overall non-isothermal kinetic relations. 

Two essential prerequisites are presented for the methods to obtain the 
real kinetic mechanism and parameters by analysis of thermoanalytical data. 
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These two points should be taken into account in the derivation of methods 
as well as in the analysis of thermoanalytical data. The independence of the 
mechanism and parameters obtained on heating rate and/or conversion is 
an assurance for the soundness of the results, and the experimental master 
curves using generalized time can also be used for this purpose. 
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