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ABSTRACT

Recently, metal tellurites have been the subject of increasing interest in connection with
their possible application in laser techniques (tellurites of Zn, Cd, Hg, Pb) [1], medicine
(tellurites of K and Na) [2], and as prospective initial substances for the synthesis of tellurides
used in semi-conductors [3,4]. Tellurites of stoichiometric composition may have practical
applications.

In order to determine conditions for synthesizing gallium tellurites, the solubility isotherm
of the system Ga(NO;),-K ,TeO;-H,0 was studied at 25 and 100°C.

EXPERIMENTAL

X-ray phase analysis was accomplished on a DRON-3 apparatus with
CuK, radiation. Chemical analysis for Ga®* was made by reverse complexo-
metric titration [5]. Tellurium ions were determined iodometrically and
gravimetrically (by precipitation with N,H, - HCl and SO, as elementary
tellurium) [6]. Derivatographic analysis was made with an OD-102-type
derivatograph (MOM, Hungary).

RESULTS AND DISCUSSION

To characterize interactions in the system Ga(NO,;);-K,TeO,-H,O at
equilibrium, Tananaev’s method of “residual concentrations™ [8] at 25°C
was used. While the solutions were mixed, Ga(NO,), concentration was kept
constant (0.5 g-mol 17!) at constant volume, and only the ratio, n, between
K,TeO; and Ga(NO,), was varied. The systems thus obtained were sub-
Jected to continuous thermostatting in thermostatting bottles, circulating
water being introduced from a U-10 ultrathermostat. The samples were
thermostatted for 45 days, since, by studying equilibrium kinetics, we found
that the concentration of Ga** and TeO?~ in the liquid and solid phases
does not change after this period of time.
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Fig. 1. Solubility isotherm of the system Ga(NO,),-K,TeO;-H,O at 25 (1) and {2) and
100°C (3).

The technique of studying the system at 100°C has been reported previ-
ously [9].

At both 25 and 100°C the liquid and solid phases were separated by
filtration and subjected to chemical analysis.

Figure 1 presents the solubility isotherm of the system Ga(NO,);-K,-
TeO;-H,0 at 25 and 100°C. The data adduced show that with increasing
K ,TeO, content in the system to n <1.5 a solid phase of precipitate is
formed and the concentration of Ga’* in the solution decreases (curve 1).
Up to n=2 practically all the tellurite introduced is in the solid phases
(curve 2). At n>2 the concentration of tellurium in the liquid phases
increases abruptly. At 25°C, up to n = 1.5, Ga,(Te0,), - 22H,0 is formed in
the system Ga(NO,),-K,TeO,—H,0. At n>2 a complex tellurite with
composition KGa(TeOs),-3H,0 is formed in the system. Unlike Ga,-
(TeOs), - 22H,0 which is an X-ray amorphous phase, KGa(TeO;), - 3H,0 is
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crystalline. As X-ray phase analysis of KGa(TeO;), - 3H,0 shows, the values
obtained for I and d are in good agreement with the literature 7].

The solubility isotherm of the system at 100°C (Fig. 1, curve 3) shows that
complex processes take place with the phases obtained at 25°C. Because of
the increasing hydrolysis due to raising the temperature, it is not only
Ga,(TeO,); (at n > 0.5) but also the double salt (at n > 2) that is subjected
to hydrolytic changes. What is more, the concentration of Ga®* in the solid
phases is reduced, reaching 2-3%.

Ga,(TeO,), - 22H,0 obtained at 100°C at n=0.2, 0.25, 0.33 and 0.5 is
also in the X-ray amorphous state but, unlike Ga(NO,),, it does not contain
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Fig. 2. Derivatogram of Ga,(TeO;);-22H,0.
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Ga(NO,), (reaction with diphenyl amine). It is obvious that, although both
substances are X-ray amorphous, their dispersion is different.

The derivatogram of Ga,(TeQO,),- 22H,0 is presented in Fig. 2. Dehydra-
tion begins at 60°C and proceeds in two stages. The endothermic peak
exhibited on the thermogram is complex and consists of a superposition of
two endothermic peaks at 130 and 160°C. The first endothermic peak
corresponds to the liberation of 6 moles of water and the formation of
Ga,(TeO,), - 16H,0. Further water is liberated at 160°C. More complete
dehydration of the sample is observed as early in the derivatogram as at
420°C. Both Ga,(TeO,),-22H,0 and Ga,(TeOs),; are X-ray amorphous.
The minor exothermic peak on the derivatogram at 520°C corresponds to
the crystallization of this X-ray amorphous phase and its becoming crystal-
line. This is shown by X-ray phase analysis of a dehydrated sample and a
sample heated at and above this temperature in an inert medium. At 520°C
and above, the thermogravimetric curve shows an increase in sample weight
owing to oxidation of Ga,(TeO,), to gallium tellurate. Oxidation takes place
at this particular temperature since, according to Hedval [10], the reactivity
of a given solid substance reaches a maximum value at the temperature at
which a fundamental change in the arrangement of the building elements of
the crystal lattice takes place. During the “loosening” of the crystal lattice
and regrouping of the building particles into a new arrangement, the system
becomes rich in energy resulting in a corresponding increase in reactivity. At
850°C tellurate liberates oxygen and becomes tellurite. At this temperature
tellurite melts and its thermal decomposition takes place in the melted state.
This assertion was verified by heating gallium tellurite in a Stepanov vacuum
vessel. Tellurite melts without decomposing. This melting temperature agrees
well with the temperature published in the literature. Thus, the endothermic
peak exhibited on the derivatogram is a complex one and consists of two
endothermic peaks, at 850 and 882°C, corresponding to the melting and
decomposition of the compound. The weight loss observed on the thermo-
gravimetric curve in the interval from 850 to 950°C is negligible; it is only
5-7%.

Based on the results of the derivatograph and chemical (of samples heated
to the corresponding temperature) and X-ray analyses the following scheme
of thermal dissociation may be suggested

130°C . 2160°C
GaZ(T603)3 " 22H20 2 Gaz(TeO3)3 " 16H20 (_—)

>520°0C 850°C
Ga,(TeO;)samorpny <  gallium tellurate 2

>882°C
Ga,(TeO; )3mey & Ga0s
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