UNIFAC INTERACTION PARAMETERS FOR EXCESS ENTHALPIES OF MIXING

R.P. SINGH * and G.A. PATHANJALI

Department of Chemical Engineering, Indian Institute of Technology, Kanpur-208016 (India) (Received 23 June 1986)

ABSTRACT

The UNIFAC model is used to correlate the excess enthalpies of mixing. This model requires two interaction parameters per group pair, and values for 49 such pairs are obtained using experimental excess enthalpy data for binary systems. These parameters may be used in the prediction of excess enthalpies of mixing and for limited temperature-extrapolation of data with reasonable accuracy.

INTRODUCTION

Excess enthalpies, or heats of mixing are important both for fundamental studies of the interaction energies and for the rational study of approximate models used in chemical engineering thermodynamics. Analytical group solution models give a method to predict thermodynamic properties of liquid mixtures from limited experimental data on reference systems. They are easy to use and give predictions of an acceptable accuracy for engineering design. In this category, the engineering utility of UNIFAC (UNIQUAC Functional-group Activity Coefficients) group contribution method [1,2] has been shown in the estimation of phase equilibria under normal pressures. However, Nagata and Ohta [3] working with the analytical form of UNIFAC, found that a set of group interaction parameters different from that used for activity coefficients is required for reproducing experimental values of heats of mixing.

We present an extension of the UNIFAC method for the prediction of excess enthalpy of mixing. Interaction parameters for 49 pairs of groups have been obtained from experimental binary H^E data. These parameters should be useful in the prediction of excess enthalpies of mixing.

0040-6031/87/\$03.50 © 1987 Elsevier Science Publishers B.V.

^{*} To whom correspondence should be addressed.

TABLE 1

Excess enthalpy data used to determine group interaction parameters

Systems		No. of	Ref.	
Components	Temp. (K)	data points		
1-Hexanol-n-hexane	298.15	20	6	
1-Hexanol-2-methyl pentane	298.15	20	6	
Isobutanol-n-decanol	298.15	18	7	
Cyclopentane-				
tetrachloroethylene	298.15	39	8	
Benzene-cyclooctane	298.15	9	9	
Benzene-n-heptane	318.15	16	10	
Acetonitrile-benzene	298.15	16	10	
Acetonitrile-n-heptane	318.15	14	10	
Carbon tetrachloride-benzene	298.15	5	11	
Ethylbenzene-toluene	298.15-303.15	9	11	
Ethylformate-n-hexane	298.15	13	12	
Acetic acid-n-heptane	308.15	5	12	
Ethylformate-n-butanol	298.15-318.15	19	12	
Ethanol-methyl acetate	298.15-318.15	20	13	
Cvclopentane-carbon				
tetrachloride	288.15	5	14	
Cyclohexane-carbon				
tetrachloride	298.15-318.15	7	14	
Benzene-carbon				
tetrachloride	288.15-318.15	10	14	
Tetrachloroethane-				
cvclopentane	298.15	4	14	
Benzene-dichloromethane	298.15-303.15	8	14	
Benzene~cvclohexane	298.15-323.15	7	14	
Benzene- p-xylene	298.15	4	14	
Benzene-chlorobenzene	303 15-308 15	7	14	
Toluene-dichloromethane	298 15-303 15	, 7	14	
<i>a</i> -Xylene-dichloromethane	298 15-303 15	7	14	
Dichloromethane-	270.10 505.15	•	1.	
tetrahydrofuran	303 15	19	15	
Carbon tetrachloride-	000120			
tetrahydrofuran	303.15	19	15	
Benzene-cyclohexanone	298.15	21	16	
Triethylamine n-hexane	298.15	19	17	
Tetrahydrofuran-benzene	303.15	19	18	
Benzene-triethylamine	298.15	11	19	
Hexafluorobenzene-	270.20			
triethylamine	298.15	19	20	
Hexafluorobenzene-				
diethylether	298.15	19	20	
Hexafluorobenzene-		-		
dimethylsulfoxide	298.15	19	20	
Chlorobenzene- <i>n</i> -heptane	293.15-313.15	57	21	

TABLE 1 (continued)

Systems		No. of	Ref.	
Components	Temp. (K)	data points		
Chlorobenzene-benzene	293.15-313.15	57	21	
Chlorobenzene-toluene	293.15-313.15	57	21	
Chlorobenzene-carbon				
tetrachloride	293.15-313.15	57	21	
Carbon disulfide-				
cyclohexane	293.15	19	21	
Carbon disulfide-toluene	293.15	19	21	
Carbon disulfide-				
carbon tetrachloride	293.15	19	21	
Benzaldehyde-benzene	298.15	7	22	
Benzaldehyde-n-hexane	298.15	10	22	
Carbon tetrachloride-				
n-heptane	298.15	7	18	
Carbon tetrachloride-				
<i>n</i> -nonane	298.15	7	18	
Acetic acid-cyclohexane	308.15	7	12	
Acetic acid-methylacetate	308.15	7	12	
Tetrahydrofuran-				
cyclohexane	303.15	10	18	
Hexafluorobenzene-				
acetone	298.15	12	20	

THEORETICAL BACKGROUND

The Gibbs-Helmholtz equation

$$\left(\frac{\partial (G^{\rm E}/T)}{\partial T}\right)_{p,x} = -H^{\rm E}/T^2 \tag{1}$$

where the differentiation at constant pressure and composition permits calculation of the excess enthalpy, H^{E} , from a model for the excess Gibbs energy, G^{E} .

According to UNIFAC model

$$G^{\mathbf{E}}/RT = \sum_{i} x_{i} \left(\ln \gamma_{i}^{\mathbf{C}} + \ln \gamma_{i}^{\mathbf{R}} \right)$$
(2)

since the logarithm of the activity coefficient of component *i* is assumed to be the sum of two contributions: a combination part, $\ln \gamma_i^C$, and a residual part, $\ln \gamma_i^R$.

Since the combinatorial activity coefficients do not depend upon temperature, only the residual part enters into the calculation of the excess enthalpy. The residual part of the activity coefficient is given by

$$\ln \gamma_i^{\mathsf{R}} = \sum_k \nu_k^{(i)} \left(\ln \Gamma_k - \ln \Gamma_k^{(i)} \right)$$
(3)

TABLE	2
-------	---

UNIFAC group interaction parameters for excess enthalpy

Main groups		UNIFAC parameters (K)	
m	n	a _{mn}	a _{nm}
CH ₂	C=C	15.92	19.88
CH ₂	ACH	133.5	26.78
CH ₂	ACCH ₂	81.74	-118.1
CH ₂	ОН	622.2	- 92.21
CH ₂	CH ₂ CO	245.9	355.5
CH ₂	CHO	782.5	342.9
CH ₂	CCOO	521.3	234.0
CH ₂	HCOO	279.8	- 32.18
CH_2	CH ₂ O	553.9	192.8
CH ₂	$(C)_{3}H$	228.5	182.7
CH ₂	CCN	872.5	356.7
CH ₂	COON	529.8	222.7
CH ₂	CCl ₂	- 24.52	70.92
CH ₂	CCl ₃	- 284.6	-125.2
CH ₂	CCl ₄	15.17	37.28
CH,	ACC1	50.71	- 46.04
CH,	CNO ₂	-0.820	357.7
CH ₂	CS,	116.1	-1.871
CH ₂	ACF	91.69	26.29
ACH	ACCH ₂	38.58	82.27
ACH	OH	844.9	81.13
ACH	CH ₂ CO	104.1	-146.7
ACH	CHŌ	315.4	- 71.54
ACH	CH ₂ O	8.690	- 88.34
ACH	$(C)_3 N$	- 68.66	60.77
ACH	CCN	228.0	-41.67
ACH	CCl_2	-119.3	174.5
ACH	CCl	- 9.101	32.65
ACH	ACC1	- 55.15	59.25
ACH	CNO ₂	-171.0	223.3
ACH	CS ₂	43.75	- 9.140
ACCH ₂	OH	844.0	82.41
ACCH ₂	CH ₂ CO	425.3	370.8
ACCH ₂	СНО	- 96.21	10.80
ACCH ₂	CCN	104.2	83.34
ACCH ₂	CCl ₂	348.2	- 79.36
ACCH ₂	ACCI	-132.4	12.71
ACCH ₂	CNO ₂	292.3	377.9
ACCH ₂	CS ₂	216.6	143.6
OH	HCOO	107.0	83.62
CH ₂ CO	ACF	322.9	- 59.76
CH ₂ O	CCl ₂	-180.9	-134.2
CH ₂ O	CCl ₃	228.5	-11.51
CH ₂ O	CCl₄	-100.8	2.190
CH ₂ O	ACF	- 119.1	217.2

Main groups		UNIFAC parameters (K)		
m	n	a _{mn}	<i>a</i> _{<i>nm</i>}	
$\overline{(C)_3N}$	ACF	135.1	128.6	
CCl₄	ACC1	-103.5	280.6	
CCl₄	CS_2	79.25	1.131	
Me ₂ SO	ACF	166.2	70.29	

TABLE 2 (continued)

where k = 1, 2, ..., N (all groups) and $\nu_k^{(i)}$, always an integer, is the number of groups of type k in molecule i; Γ_k is the group residual activity coefficient; and $\Gamma_k^{(i)}$ is the residual activity coefficient of group k in a reference solution containing only molecules of type i. The residual activity coefficient Γ_k is given by [2]

$$\ln \Gamma_{k} = Q_{k} \left[1 - \ln \left(\sum_{m} \theta_{m} \Psi_{mk} \right) - \sum_{m} \left(\theta_{m} \Psi_{km} / \sum_{n} \theta_{n} \Psi_{nm} \right) \right]$$
(4)

where *m* and n = 1, 2, ..., N (all groups) and Q_k is the group area parameter of group *k*, and Q_k values are obtained from Gmehling et al. [4]. Ψ_{nm} is the group UNIFAC parameter between groups *m* and *n* ($\Psi_{mm} = \Psi_{nn} = 1$). Equation (4) also holds for $\Gamma_k^{(i)}$. The area fraction of group *m*, θ_m , is given by

$$\boldsymbol{\theta}_m = \frac{\boldsymbol{Q}_m \boldsymbol{X}_m}{\sum_n \boldsymbol{Q}_n \boldsymbol{X}_n} \tag{5}$$

Here X_m is the group fraction of group m in the mixture given by

$$X_{m} = \frac{\sum_{j} \nu_{m}^{(j)} x_{j}}{\sum_{j} \sum_{n} \sum_{n} \nu_{n}^{(j)} x_{j}}$$
(6)

where j = 1, 2, ..., M (all components); n = 1, 2, ..., N (all groups) and x_j is the mole fraction of component *j*. The group UNIFAC parameter, Ψ_{nm} is a function of temperature given by

$$\Psi_{nm} = \exp(-a_{nm}/T) \tag{7}$$

where a_{nm} is the temperature-independent group interaction parameter $(a_{nm} \neq a_{mn})$. From eqns. (1), (2) and (3), the resulting expression for H^{E} is obtained as follows

$$H^{\rm E} = -RT\sum_{i}\sum_{k} x_{i} \nu_{k}^{(i)} \left[T\left(\frac{\partial \ln \Gamma_{k}}{\partial T}\right)_{p,x} - T\left(\frac{\partial \ln \Gamma_{k}^{(i)}}{\partial T}\right)_{p,x} \right]$$
(8)

272

$$T\left(\frac{\partial \ln \Gamma_{k}}{\partial T}\right)_{p,x} = Q_{k} \sum_{m} \theta_{m} \left[\frac{\Psi_{mk} \ln \Psi_{mk}}{\sum_{n} \theta_{n} \Psi_{nk}} + \frac{\Psi_{km} \sum_{n} \theta_{n} \Psi_{nm} \ln(\Psi_{km}/\Psi_{nm})}{\left(\sum_{n} \theta_{n} \Psi_{nm}\right)^{2}} \right]$$
(9)
A similar expression holds for $T\left(\frac{\partial \ln \Gamma_{k}^{(i)}}{\partial T}\right)$

 $\partial T = \int_{p,x} dT$ `\

REDUCTION OF DATA

We adopted the classification of functional groups described by Gmehling et al. [4]. The group interaction parameters were determined from the experimental H^{E} data for binary systems listed in Table 1. The simplex method [5] was used to obtain the parameters by minimizing the sum of squares of deviations in experimental and calculated H^{E} values for all data points of relevant systems.

RESULTS

Table 2 lists the interaction parameters for 49 pairs of functional groups. The overall average value of RMSRD (%) in H^{E} was 5.2 for the reference

TABLE 3

Experimental and predicted excess enthalpy data for the system acetonitrile (1)-benzene (2) at 318.15 K

$\overline{x_1}$	H^{E} (J mol ⁻¹)		
	Experimental [10]	Predicted	
0.1778	249.8	227.6	
0.2537	326.8	308.8	
0.3309	393.3	378.7	
0.4048	442.7	431.4	
0.4812	477.4	468.2	
0.5403	491.2	482.8	
0.5708	493.3	485.3	
0.6025	491.6	483.7	
0.6460	482.0	475.3	
0.6481	478.6	474.5	
0.6805	465.7	460.7	
0.7408	430.5	422.2	
0.8016	372.8	363.2	
0.8669	283.7	274.5	
0.9361	153.1	148.5	

systems listed in Table 1. Table 3 compares the calculated $H^{\rm E}$ values at 318.15 K with the experimental values for the acetonitrile-benzene system using interaction parameters evaluated from the experimental data at 298.15 K. It is seen that the UNIFAC method can be used for limited extrapolation of $H^{\rm E}$ values to another temperature with reasonable accuracy.

CONCLUSION

UNIFAC interaction parameters for 49 pairs of groups are obtained using experimental binary H^E data. These parameters may be used in predicting H^E data and for obtaining reasonable estimates of H^E values at mildly extrapolated temperatures.

NOMENCLATURE

<i>a</i> ""	temperature-independent group interaction parameter for the		
	group pair $n-m$ (K)		
G^{E}	excess Gibbs energy $(J \text{ mol}^{-1})$		
H^{E}	excess enthalpy $(J \text{ mol}^{-1})$		
р	pressure (Pa)		
Q_k	group area parameter of group k		
R	Universal gas constant $(J \text{ mol}^{-1} \text{ K}^{-1})$		
RMSRD (%)	$100 \left[\frac{1}{\text{data points}} \sum \left(\frac{experimental - calculated}{experimental} \right)^2 \right]^{1/2}$		
Т	absolute temperature (K)		
\boldsymbol{x}_i	mole fraction of pure component <i>i</i>		
X _m	group fraction of group m in solution		

Greek letters

$\boldsymbol{\nu}_k^{(i)}$	number of groups of type k in molecule i
γ_i	activity coefficient of molecular component i
Γ_k	group residual activity coefficient of group k in solution
$\Gamma_k^{(i)}$	group residual activity coefficient of group k in pure component i
θ_m	area fraction of group m in solution
Ψ_{nm}	temperature-dependent group UNIFAC parameter

Subscripts

i, j	component
k, m, n	group

C combinatorial R residual

REFERENCES

- 1 Aa. Fredenslund, R.L. Jones and J.M. Prausnitz, AIChE J., 21 (1975) 1086.
- 2 Aa. Fredenslund, J. Gmehling and P. Rasmussen, Vapor-Liquid Equilibria Using UNI-FAC, Elsevier, Amsterdam, 1977.
- 3 I. Nagata and T. Ohta, Chem. Eng. Sci., 33 (1978) 177.
- 4 J. Gmehling, P. Rasmussen and Aa. Fredenslund, Ind. Eng. Chem. Process Des. Dev., 21 (1982) 118.
- 5 J.A. Nelder and R. Mead, Comput. J., 7 (1965) 308.
- 6 F. Kimura and G.C. Benson, J. Chem. Eng. Data, 26 (1981) 317.
- 7 V.T. Lam, H.D. Pflug, S. Murakami and G.C. Benson, J. Chem. Eng. Data, 18 (1973) 63.
- 8 J. Polak, S. Murakami, V.T. Lam and G.C. Benson, J. Chem. Eng. Data, 15 (1970) 323.
- 9 R.C. Mitra, S.C. Guhaniyogi and S.N. Bhattacharya, J. Chem. Eng. Data, 18 (1973) 147.
- 10 D.A. Palmer and B.D. Smith, J. Chem. Eng. Data, 17 (1972) 71.
- 11 G. Lewis and A.F. Johnson, J. Chem. Eng. Data, 14 (1969) 484.
- 12 I. Nagata, M. Nagashima, K. Kazuma and M. Nakagawa, J. Chem. Eng. Jpn., 8 (1975) 261.
- 13 I. Nagata, T. Ohta and T. Takahashi, J. Chem. Eng. Jpn., 5 (1972) 227.
- 14 P.P. Singh, R.K. Nigam, V.K. Sharma, S.P. Sharma and K.C. Singh, Thermochim. Acta, 52 (1982) 87.
- 15 S. Dincer and H.C. Van Ness, J. Chem. Eng. Data, 16 (1971) 378.
- 16 K. Tamura, S. Murakami and R. Fujishiro, J. Chem. Thermodyn., 13 (1981) 47.
- 17 B. Budoo and R. Philippe, J. Chem. Thermodyn., 10 (1978) 1147.
- 18 R. Bolinaga, M. Gracia and C.G. Losa, J. Chem. Thermodyn., 10 (1978) 667.
- 19 B.I. Mattingley and D.V. Fenby, J. Chem. Thermodyn., 7 (1975) 307.
- 20 B.I. Mattingley, Y.P. Handa and D.V. Fenby, J. Chem. Thermodyn., 7 (1975) 169.
- 21 B.S. Harsted and E.S. Thomsen, J. Chem. Thermodyn., 7 (1975) 369.
- 22 T. Ferino, B. Marongiu, V. Solinas and S. Torrazza, Thermochim. Acta, 57 (1982) 147.