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ABSTRACT

L-H-C type temperature function has been introduced into the Martin equation of state.
This modification has been used to calculate over the entire liquid range for pure substances,
the saturated liquid and vapor compressibilities and the saturated pressure. A comparison has
been made for a series of pure substances (17 compounds, 407 data points pairs) with the
results obtained by means of this work and by the use of Martin I, I and III equation forms,
the Soave 1972 and 1980, and the L-H-C modifications of the Redlich~Kwong equation,
and the generalized parameter technique of Panagiotopoulos and Kumar applied to the
Redlich-Kwong equation of state.

THE MARTIN EQUATION OF STATE

Martin [1] indicated that the three constant form of the Clausius equation
of state [2] is the best of the available two term cubic equations in the
volume, i.e.:

RT  a(T)

P=
V-5 (v+ c)2

(1)

where a, b and ¢ are the substance dependent parameters of the equation of
state. Martin rewrote eqn. (1) in the reduced form of corresponding states
as:
O A(T,)

©ZV-B (zy+c)

2)
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where:

A=aP /R*T?
B =bP,/RT,
C=cP./RT,

and Z_ is the experimental compressibility factor at the critical point.
To fit data along the critical isotherm, following Martin [1] and Joffe [3], we
write:

A =727/64TV (3a)
B=0.857Z,—0.1674 (3b)
C=0.1250 — B (3c)

Putting relations (3a-3c) into eqn. (2) yields the “original Martin equation
of state”, or M, (Table 1). This equation of state fits the results for reduced
temperatures from 7, = 0.8 up to 7,=2.0. Below T, = 0.8, the temperature
function T,V (parameter 4, eqn. (3a), see also ref. 4) may be modified to a
new expression, T,¥ — a e~ A% If this modification:

27 /64

A(T,) = 4a

) T e expl T, )
B=0.857Z,—0.1674 (4b)
C=0.1250— B (4¢)

in which parameters B and C have been kept the same, is introduced into
eqn. (2), we have the modified Martin equation of state [4], or M (Table
1):
_ . 27/64

ZV:=B (1Y - aexp(-BT))](ZV,+ C)’

Following the work of Martin [1] and later Joffe [3], we modified eqn. (2) by
replacing the term 7Y in eqn. (3a) by the Soave (1972) [5] temperature
function a*:

a*=10+m(1.0-T) (6)

in which m = 0.480 + 1.574w — 0.176w?, and w is the Pitzer acentric factor

[6-8]. This modification of the Martin equation was then identified as M,
(Table 1).

P

r

(5)

PROPOSED MODIFICATION

Following the method of Lielmezs et al. [9], the temperature dependent
function, a(T), of eqn. (1) is rewritten as:

a(T) = a(T,, P.)a(T*) ()
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in which:
27 R*T?
a(To B) = g3 5 (®)
and:
a(T*) =1+ pT* : &)

such that p and ¢q are the characteristic constants of a substance at its
saturated liquid-vapour equilibrium state, while 7* is defined as:

RN

The calculation of the values of the constants p and ¢ is subject to the
general thermodynamic restraint of saturated vapour-liquid equilibrium;
i.e., the fugacities of liquid and vapour phases are equal (Lielmezs et al. [9]):

= (11)
Putting the newly introduced expressions, eqns. (7-10), into eqns. (3a-3c),
we obtain: -

D(0.857Z_~ 0.1674)( P./T.) (12)
E=(0.2924 - 0.857Z,)(P,/T;) (13)
27 P
v ) (14)

We now rewrite eqn. (1) in terms of the compressibility factor Z by means

of parameters D, E and F (eqns. (12-14)) as:

Z°+(QE-D-1)Z*>+(F-2DE—-2E+E*)Z—- (FD+ DE*>+E?)=0
(15)

On the other hand, if we subject eqn. (1) to the general thermodynamic
requirement:

in i=fop(—l—/——l)dp (16)

and introduce eqn. (5), we obtain the fugacity coefficient of pure substances
for the Martin equation of state in terms of the proposed modification,
(eqms. (7-10)):

1 D 2F FE

I - _
WPz D Z-D Z+E ' (z+p) (17)

Equation (15) is solved for the saturated vapour, Z' and saturated liquid,
Z!, compressibility factors, while eqns. (11-14, 17) are used to calculate the
corresponding fugacity coefficients, f,¥ and f!. The numerical evaluation of
constants p and g follows the method described by Lielmezs et al. [9].
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EXPERIMENTAL DATA

The physical property and saturated liquid-vapour equilibrium data
utilized (Table 1) were taken from the sources as listed by Lielmezs et al. [9].
These data were thought to be sufficiently reliable. The RMS% error is used
as a basis for comparison of the accuracy of fit (Table 1).

RESULTS AND DISCUSSION

The introduction of a temperature-dependent function, a(T*) (eqns.
7-10), into the a term of the Martin equation of state (eqn. 1) allows the
calculation of saturated vapour pressures and the vapour and liquid com-
pressibilities (Table 1) for pure compounds from the triple point to the
vapour-liquid critical point. Table 1 presents, in terms of RMS% error, a
comparison between the results obtained from this work, experimental data
and those calculated by using the Martin I, II and III equations [1, 3, 4], the
L-H-C [9], the Soave 1972 and 1980 equations [5, 10] and the Panagioto-
poulos and Kumar [11] generalized parameter method. When the results of
the six methods (excluding the method of Panagiotopoulos and Kumar) are
compared (Table 1), it is found that the present work gives the most
accurate results for saturated liquid compressibilities, with the M ;; method
second, and the M; method third. For saturated vapour compressibilities,
the M, method is the most accurate, the M, method the second and this
work the third most accurate. For saturated vapour pressures, the Soave III
(1980) gives the lowest RMS% error; this work is seen to be the second best
followed by the M; method.

The apparently excellent results of the generalized technique of Pan-
agiotopoulos and Kumar (Table 1) result from the fact that for each
temperature the corresponding saturated liquid molar volumes and the
saturation pressures are the required input data; that is, these fitted values
of saturation pressures and saturated liquid state compressibility factors are
back-calculated values of the input experimental data.

Following the calculation procedures already established by Lielmezs et
al. [9], the proposed modification of the Martin equation satisfies the
following conditions:

(1) There is a new temperature-dependent function, a(7*), which has
two adjustable parameters, p and gq. It is suggested that p and g values be
determined from the available saturated liquid equilibrium data. The re-
quired normal boiling and liquid-vapour critical point temperatures are
usually available.

(2) The new temperature-dependent function, «(7*) (eqns. 7-10), be-
comes unity at the critical state:
a(T*)—->1.0
T-T,
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and the proposed modification of the Martin equation satisfies the necessary
conditions at the critical point.
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LIST OF SYMBOLS

PR
o
= O

¥*

N<NNXR v 23>0

Subscripts

= aQ

NB

Superscripts

coefficients defined by eqns. (1) and (2)

temperature dependent parameter, defined by eqn. (7)
parameters introduced by eqns. (2) and (3a-3c¢)
parameters introduced by eqns. (12-14)

fugacity

coefficient introduced by eqn. (6)

coefficient to be calculated, eqn. (3a)

coefficient, defined by eqn. (9)

pressure

coefficient, defined by eqn. (9)

~ universal gas constant

absolute temperature

dimensionless temperature, defined by eqn. (10)
volume

compressibility factor

critical state

gas state

liquid state

normal boiling point
reduced state
saturated state

liquid phase
vapour phase



Greek letters

a, B coefficients introducec
a* temperature depender
a{(T*) dimensionless temper

by eqn. (9)
w acentric factor
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