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ABSTRACT 

The article is dedicated to some critical considerations concerning the kinetic equatiims 
used to describe non-isothermal processes. 

INTRODUCTION 

Non-isothermal kinetic studies require the changes with time to be 
followed of a certain temperature dependent property of the investigated 
system as well as its temperature [l]. In non-isothermal kinetics the follow- 
ing dependence between the temperature of the system, T, and time can 
always be considered: 

Jl(t, T) =O (1) 

where t and T are dependent variables (see Appendix I). From eqn. (1) it 
follows that: 

T= e(t) (2) 

t = v(T) (3) 

By taking the derivative of T with respect to t, from eqn. (2) one obtains the 
heating rate, dT/dt, of the system in the general form: 

g = P(t) (4) 

During a non-isothermal kinetic experiment the heating rate can be either 
kept at a constant 

dT 
dt- -P 
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value j3, 

(5) 
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or can be changed according to the following relationships: 

g = P(t) = b,(t) (6) 
dT 
dt- -&=&CT) 

For the usual case (eqn. 5) the following integral relationships can be 
written: 

T=B(t)=T,+pt (8) 

t+)+i (9) 

where To is the temperature corresponding to t = t,. 

THE WAY TO PUT THE PROBLEM 

Let x be a property of the system which changes with time according to 
the following differential equation 

g =Af(x)k(T) 

which is valid in isothermal conditons. Other variables on which x could 
depend will be considered as constants and included in the constant factor 
A. Equation (10) through variables separation and integration with (x0, to) 

as initial conditions transforms into: 

dx 
- =Ak(T) dt 
f(x) 

and 

or 

J 
s dx 

- =Ak(T)(t - to) 
.Y,, f( x > 

(13) 

In relationship (13) x depends implicitely on the independent variables T 
and t(T is considered as a variable as at various temperatures, namely 
T,, T2,..., T,, one obtains the corresponding isothermal curves). The in- 
tegral kinetic equation (13) describes a family of isothermal curves. 

Let us consider the function 

x=&q T) (I4 
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t -- 

Fig. 1. Tridimensional diagram x = g(f, T). 

for isothermal conditions. In a three-dimensional orthogonal system the x 
values lie on a surface G2, (Fig. 1). The surface G2, which can be obtained 
from the isothermal curves corresponding to the temperatures T,, T2, . . . , r,, 
describes the behaviour of the system at various temperatures. 

Now, the problem is to derive the differential and integral kinetic equa- 
tions describing adequately a non-isothermal process from the correspond- 
ing isothermal kinetic equations. 

In order to do that, it is necessary to assume that the functions f(x) and 
k(T) do not change their form in non-isothermal conditions. We should 
equally suppose that the heating rate is small 
the Maxwell-Boltzmann distribution in the 
thermal kinetic analysis. 

enough to keep the validity of 
system submitted to non-iso- 

THE DERIVATION OF SOME DIFFERENTIAL EQUATIONS AND THEIR IN- 
TEGRATED FORMS WHICH DESCRIBE NON-ISOTHERMAL PROCESSES. SOME 
INADEQUATE EQUATIONS FOR NON-ISOTHERMAL KINETICS 

Case I. Derivation of equations valid in nonisothermal kinetics from the 
isothermal differential equation taking into account that in nonisothermal 
conditions t and T are dependent variables 

From equation (10) and relationships (2), (3) and (7) one obtains: 

g = Af(x)k(B( t)) 

The differential equations (15) and (16) which are equivalent from the 
standpoint of the information about x (t and T being dependent variables) 
can be considered as adequately describing non-isothermal processes. 
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From eqns. (15) and (16) through variable separation and integration one 
obtains: 

x dx 
J- X0 f(x) 

=A J k@(t)) dt 07) 
10 

J 
x dx -=A 

X0 f(x) J ’ k(T) dT T, P,(T) 
For constant heating rate, eqns. (17) and (18) transform into: 

x dx 
J- X0 f(x) 

=A J ‘k(T,+/3t) dt 
f0 

J 
x dx 

- = 4 Ji(T) dT 
x0 f(x) p 7-0 

Equations (17-20) also describe adequately non-isothermal processes. 

(18) 

09) 

(20) 

Case II. Model of the infinitesimal-isothermal portions (MIIP) 

Let us divide the time interval between t, and t on the time axis in small 
equal intervals At, within which the non-isothermal process investigated can 
be considered as described by integral equations for isothermal conditions 
(Fig. 2). The following two possibilities (eqns. 21 and 23) can be considered: 

(4 

J 
x1 dx 

- = Ak(B(t,)) At 
X0 f(x) 
x2 dx 

J- X, f(x) 
=Ak(B(t,+At)) At 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

J 
xt~ dx 

- = Ak(B(t, + (n - 1) At)) At 
x,,_, f(x) 

(21) 

From eqn. (21) by summation one obtains: 

xn dx 
J- XC, f(x) 

=Atk(8(t,+(i-1) At)) At=s: 
i=l 

(B) 
XI dx 

J- XC, ffx) 
=Ak(B(t,+At)) At 

J 
x2 dx 

- =Ak(B(t,+ 2 At)) At 
s, f(x) 
. . . . . . . . . . . . . . . . . . . . . . . . 

.~,a dx 

J- 
.Y,,.., f(x) 

= Ak( O(t, + n At)) At 

(22) 

(23) 
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Fig. 2. Infinitesimal isothermal portions on the non-isothermal dependence .x(t). 

~11 dx 

/- X0 f(x) 
=A i k(t?(t,+jAt)) At=S 

j=l 

For n+ cc and At+0 

lim x,, = x (25) 
n-a, 

lim n At = t - t, (26) 
,+CC 
Ii t+O 

and the sums s and S (Darboux’s sums) have the same finite limit which 
equals the integral of Ak( 0( t)) on the closed interval (to, t), thus A k( 8( t)) 
is the Riemann integrable [2]. 

lim s= lim S=A ‘k(e(t)) dt (27) 
I,+ 00 #I * CQ / f0 

Taking into account this result, relationships (22) and (24) for n --, M 
transform into: 

x’ dx 

J- X0 f(x) 
= A 

/ 
‘k@(t)) dt 

to 
(28) 

i.e. relationship (17). Equation (28) with the change of variable t --+ T 
transforms into relationship (18). 

Case III. Derivation of inadequate equation from the integrated isothermal 
equation (13) 

Taking into account that in eqn. (13) t and T are independent variables 
as well as that the function x = g( t, T) included implicitely in eqn. (13) 
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fulfils Schwarz’s theorem [2] one can write the total differential of eqn. (13) 
(see Appendix II) 

& =A[k’(T)(t- to) dT+ k(T) dt] (29) 

Contradictory to the assumption, that T is constant, used to derive eqn. (13) 
from eqn. (11) one assumes that t and T, supposed to be independent 
variables in deriving eqn. (13), are connected by relationships such as eqn. 
(1). With this erroneous supposition, relationship (29) is divided by dt 
(although this operation was considered as impossible at the derivation of 
eqn. (29)) thus giving: 

$ =af(x)[k’(T)(t- t,,)$ + k(T)] (30) 

The error made in deriving eqn. (30) consists in transforming a differential 
relationship with t and T as independent variables into another differential 
relationship where t and T are dependent. Taking into account relationships 
(l)-(7) one can derive from eqn. (30) the following two differential equa- 
tions: 

s = Af(x)[k’(e(t>)(t - t,)&(t) + k@(t))] (31) 

$$i =A+) 
k(T) k’(T)(@) - cP(T,)) + jqg 

2 1 (32) 

eroneously treated as differential equations adequately describing non-iso- 
thermal processes. 

Let us now analyse the integrated forms of eqns. (31) and (32). 
In eqn. (31) after variable separation and integration by parts one 

obtains: 

$ 
x dx 

-=A 
X0 f(x) 

rk’(8(t))(t-t,)&(t) dt+Jk(B(t)) dt 
10 1 (33) 

where k’( r9( t)) is the derivative of k with respect to 8. 
The first integral from the right member of eqn. (33) can be solved 

through integration by parts. 

r,=~‘k’(e(t))(t-t,))&(t)dt=k(8(t))(t-t,)c; -j-k(e(t)) dt 
fo 20 [O 

(34) 

or 

I, = k@(t))(t - to) - fk(e(t)) dt 
f0 

(35) 

Introducing this result in eqn. (33) it turns out that: 

/’ 
.\’ dx 

- =Ak(B(t))(t - to) 
.X0 f( x ) 

(36) 
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or taking into account relationship (2) 

/ 
“* 

x0 f(x) 
=Ak(T)(t - to) (37) 

i.e. the isothermal eqn. (13). This result confirms the non-validity of eqn. 
(31). Actually this result could have been expected as the integral of a 
function with a total differential does not depend on the integration path. 

Applying the same method to integrate eqn. (32) one obtains successively: 

- 
J 

Tk(T)cp’(T) dT (39) 
To 

4 = k(T)(dT) - v(G)) - jTT$$!y dT 
0 

Thus 

J ,g =Ak(T)(cp(T) - dT,)) 

and taking into account relationship (3) one obtains: 

/ 

x dx 
- =Ak(T)(t- to) 

x0 f(x) 

(40) 

(41) 

(42) 

As expected, relationship (13) is again obtained thus confirming the non- 
validity of eqn. (32). 

A shift on the surface Q2,, t and T being connected by eqn. (1) does not 
lead to a true non-isothermal curve as this shift is determined by relation- 
ship (13). In Fig. 1 the curve C, on the surface Q2, is not a true non-isother- 
mal curve. 

The three analysed cases impose the following conclusions. 
(i) The derivation of equations describing non-isothermal processes should 

be always performed either starting from the isothermal differential equa- 
tion with t and T as dependent variables or from the model MIIP. The use 
of the isothermal integrated equation leads to erroneous results. 

(ii) The shift on a surface obtained from isothermal curves does not lead 
to a true nonisothermal curve. 

If a continuous function k*(T) for which conclusions (i) and (ii) are not 
valid exists, then, the right member of relationships (17) and (36) should be 
equal 

A 
J 

‘k*@(t)) dt=Ak*(B(t))(t-t,) 
fo 

for every value of t which fulfils the condition t > t,. 

(43) 
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The result of such an analysis is given in Appendix III. One obtains: 

k*( 0( t)) = const (44) 
i.e. such temperature dependent function does not exist. 

APPLICATIONS IN CLASSIC NON-ISOTHERMAL KINETICS 

The basic rate equation used in classic non-isothermal kinetics is [1,3] 

dell 
dt = A,T’f( CX) - E’RT 

where in the most general case the conversion function f( (Y) is given by [4,5]: 

f(ar) = (1 - u)“cP(ln ,+--)’ 

A,.T’ is the temperature dependent pre-exponential factor and E is the 
activation energy. 

The classical conditions are the following: A, is constant; r is constant; 
E is constant; f(a)-does not change its form. An important particular 
form of relationship (45) for r = 0 and A, = A is: 

g = Af( a)evEIRT (47) 
In the following we shall use eqn. (45), which for r = 0 transforms into (47). 

For 

f(x) =fW (48) 
k(T) = T’ eeEIRT (49) 
A=A, (50) 

all the results obtained in the previous sections can be adequately par- 
ticularized. Thus from relationship (13) one obtains: 

a da 
J- = A T’ eeEIRT(t - to) 

a, f(a) r 
(51) 

Taking into account that most frequently (Ye = 0 and t, = 0, eqn. (51) 
transforms into 

/ 

a da - = A,T’ ePEIRT t 
0 f(a) 

(52) 

Similarly eqns. (15)-(18) taking into account eqns. (48)-(50) turn into: 

g = A,f( a)dr( t) e-E/Re(r) (53) 

% = P,(T) 
A,f(cy)T’e-E/RT (54) 
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Fig. 3. Plot of a vs. t and T. 

J 
a dcu - = A, 

0 f(a) 
‘fir(t) e-VW0 dt 

J 

a da 
-=A, 

0 fW 
(56) 

Taking into account that eqn. (52) valid for isothermal conditions contains (Y 
implicitely as function of T and t considered independent variables, a 
general relationship with the form: 

a=gi(& T) (57) 
can be inferred. In eqn. (57) the subscript I stands for isothermal. The 
representative tridimensional plot of (Y versus t and T in an orthogonal 
system of axes is given in Fig. 3. The total differential of eqn. (57) is: 

(58) 
Taking into account that T and t are independent variables relationship (58) 
cannot be divided by dt. 

In the literature connected with relationship (58) there is much discussion 
initiated by MacCallum et al. [6-211 concerning its validity and interpreta- 
tions. In our opinions some of these standpoints are inconsistent because in 
one way or another they are based on the assumption that relationships such 
as (57) and (58) are also valid in non-isothermal kinetics; in non-isothermal 
kinetics t and T are dependent variables. Even if we meet a relationship of 
the form: 

a = g&, T) (5% 
where the subscript N stands for non-isothermal, this should be written in 
one of the following equivalent forms with (Y as a function of only one 
variable: 

a = gI&> W)) = gi&) (60) 

a = gr&J(T), 0 = giV2(T) (61) 
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The differentiation of eqns. (60) and (61) leads to: 

da = %, de(t) 
aedt dt+% dt=% dt 

dcu = ‘g, d(#) dT+ ‘g, -- 
a(p dT 

aTdT=dT dgN2 dT 

(62) 

(63) 

In relationships (62) and (63) the partial derivatives have a different mean- 
ing than in eqn. (58), as 0(t) and cp( T) are dependent functions of t and T. 

The term (ag@T), from eqn. (58) was considered without physical 
meaning as one cannot change the temperature at a constant value of time. 
Of course, this is not possible in non-isothermal kinetics working with eqns. 
(60) and (61) but is possible on the surface Sz, constructed from several 
isothermal curves. The term (~g,/~T), should be interpreted as a mathe- 
matical shirt on surface ti2, parallel to the temperature axis. The only shifts 
on Q2 with physical meaning are those parallel with the time axis which 
correspond to the isothermal curves. 

Concerning relationship (58) we cannot agree with Felder and Stahel [8] 
who claim that this is not a total differential (see the considerations 
connected with case III). 

Other authors [5,17,19,20] derive non-isothermal kinetic equations using 
the method described in case III. In this way, for dT/dt = j3 = const., the 
particular form of eqns. (30)-(32) with r = 0, a,, = 0, t, = 0, is: 

g =Af(a) eeElR7[ 2/3t+ 11 

where taking into account eqns. (8) and (9) 

(64) 

(65) 

i.e. a differential equation valid for isothermal kinetics. This is the reason 
why we agree with the critical standpoints of Criado concerning these 
equations [21]. For r # 0 the following equation was obtained: 

da 
dt =A,T’f(a) e- E~++(+++-+-T~)] (66) 

This questionable equation can be obtained also from eqn. (30) taking into 
account relationships (48)-(50). 

From (65) and (66) through integration one obtains: 

T- T0 _ =A e-E/RTt=A- e -E/RT 

P 

J 
a da 

-=A T’e-E/RTt=A 
T- To 

0 f(a) r 
-T* e-E/RT 

r P 
which are particular forms of eqns. (36) and (41), valid for isothermal 
kinetics i.e. inconsistent. 
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Fig. 4. Piot of a vs. B and t. 

Thus while eqns. (53)-(56) correctly describe non-isothermal kinetic data 
equations (64)-(68) are inadequate for being used in non-isothermal kinet- 
ics. 

Taking into account conclusion (i) a relatively recent non-isothermal 
differential kinetic equation derived by MacCallum [22] from an integrated 
isothermal relationship should, in our opinion, be reviewed. This applies 
equally to the considerations according to which, from several isothermal 
experiments, one can obtain at least one non-isothermal description of the 
process [1,14]. 

Similar problems appear when considering several non-isothermal experi- 
mental curves obtained at constant values of the heating rate &, &, . . . , &. 

In this case taking into account that t and T are connected through 
relationship (8), surfaces Q2, and G12, can be drawn up (see Figs. 4 and 5). In 
order to do that, one has to consider eqns. (55) and (56) taking into account 

Fig. 5. Plot of (Y vs. /3 and T. 
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eqn. (8). Thus, in principle, one can derive: 

a = e,(P, t) (69) 
a = Q(K T) (70) 
with the functions (60) and (61) as particular cases. By plotting these 
functions in an adequate system of axes one obtains the surfaces 9, and at,. 
The differentials of the functions (69) and (70) are: 

(71) 

(72) 

Contrary to the premise according to which /3 and t are independent, 
Gorbachev [23] considered that the differential (71) can be divided by dt 
and introduces the term djS/dt which is meaningful only if relationship (6) 
is valid, but this last relationship is valid if j? and t are independent 
variables. 

The shifts on surfaces S& and Q2, do not lead to a non-isothermal curve 

with Pi(t) and MT) (C, and C, are not true curves). 

APPENDIX I 

Dependent and independent variables 

From a set of real variables xi, x2,. . . , x,, one is dependent on the others 
if a relationship of the form: 

F(x,, x~,...,x,) =0 (AI) 
is valid. 

If such a relationship does not exist, all the n variables are independent. 
From an equation like (Al) one obtains: 

xk=Fk(xi, x2,...,xk-i, xk+i,.*.,x,) (A2) 
By substituting (A2) in (Al) the number of independent variables decreases 
to unity. 

APPENDIX II 

The differential of many variables functions. The derivative and the differential 
of a composed function [2] 

The differential of a real function on n independent variables 
f( xi, x2,. . . , x,) is: 

dx dxrl 
X,,XJ...X” 

(A3) 
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A composed function of one variable has the form: 

G(x) = g[u,(x), u,(x), * * - Ux)] 

Its differential is: 

(A4 

dG(x) = G’(x) dx = $2 
‘g dU, dx 

1 

dx+...+av d 
m X 

W) 

the partial derivatives ag/aUi (i = 1, . . . m) having different physical mean- 
ings than Eif/axj (j = 1, . . . n) in (A3). 

The derivative of G(x) is: 

For the particular case: 

G,(x) = g,[U(x),xl (A7) 

ag, dU ag, 
dG1(x)=audx dx+% dx 

ag, dU ag, 
G;(x)==z+z 

(A@ 

(fw 

APPENDIX III 

Derivation of relationship (44) 

Let us suppose that 

k*@(t)) = h(t) 

where h(t) has the form: 

(AIN 

h(t)=a,+2a,t+3a,t2+...+(n+l)a,t”+... (All) 

Introducing (All) into (43) with t, = 0, one obtains: 

a,t + a,t* + . . . +a,t”+l + . . . = a,t + 2a,t* + . . . + (n + l)antn+l + . . . 

( fw 
or after performing the calculations: 

a,+2a,t+...+na,t”-‘+... =0 (Al3) 

Considering the times t,, t,, . . . t,, . . . the systems of equations obtained 
from (A13) can be solved to obtain the unknowns a1, 2a,, . . . na,. The 
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system admits solutions which differ from the trivial one only if the 
determinant of the coefficients, equals zero 1241 

1 t, t; . . . tl”-’ . . . 

D= 1 t, t; . . . t;-l . . . =o w4 -------------------_____ 
1 t, t,2 . . . t,“-’ . . . 

This is a Vandermonde type determinant [24], thus 

D= rI (tj-t;) 

j>i 
(A19 

where i, j = 1, 2, . . . n and if fj # ti (i #j) then D # 0. Then the system 
admits only the trivial solution I.e., 

h(t) = a, = const = k*( O(t)) 6416) 
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